Search code examples
rregressionlinear-regressionleast-squarescoefficients

perform Deming regression without intercept


I would like to perform Deming regression (or any equivalent of a regression method with uncertainties in both X and Y variables, such as York regression).

In my application, I have a very good scientific justification to deliberately set the intercept as zero. However, I can't find way of setting it to zero, either in R package deming, it gives an error when I use -1 in the formula:

df=data.frame(x=rnorm(10), y=rnorm(10), sx=runif(10), sy=runif(10))
library(deming)
deming(y~x-1, df, xstd=sy, ystd=sy)
Error in lm.wfit(x, y, wt/ystd^2) : 'x' must be a matrix

In other packages (like mcr::mcreg or IsoplotR::york or MethComp::Deming), the input are two vectors x and y, so there is no way I can input a model matrix or modify the formula.

Do you have any idea on how to achieve that? Thanks.


Solution

  • There is a bug in the function when you remove the intercept. I'm going to report it.

    It is easy to fix, you just have to change 2 lines in the original function. The print does not work correctly, but it is possible to interpret the output.

    deming.aux <- 
    function (formula, data, subset, weights, na.action, cv = FALSE, 
              xstd, ystd, stdpat, conf = 0.95, jackknife = TRUE, dfbeta = FALSE, 
              x = FALSE, y = FALSE, model = TRUE) 
    {
    
      deming.fit1 <- getAnywhere(deming.fit1)[[2]][[1]]
      deming.fit2 <- getAnywhere(deming.fit2)[[2]][[1]]
    
      Call <- match.call()
      indx <- match(c("formula", "data", "weights", "subset", "na.action", "xstd", "ystd"), names(Call), nomatch = 0)
      if (indx[1] == 0) 
        stop("A formula argument is required")
      temp <- Call[c(1, indx)]
      temp[[1]] <- as.name("model.frame")
      mf <- eval(temp, parent.frame())
      Terms <- terms(mf)
      n <- nrow(mf)
      if (n < 3) 
        stop("less than 3 non-missing observations in the data set")
      xstd <- model.extract(mf, "xstd")
      ystd <- model.extract(mf, "ystd")
      Y <- as.matrix(model.response(mf, type = "numeric"))
      if (is.null(Y)) 
        stop("a response variable is required")
      wt <- model.weights(mf)
      if (length(wt) == 0) 
        wt <- rep(1, n)
      usepattern <- FALSE
      if (is.null(xstd)) {
        if (!is.null(ystd)) 
          stop("both of xstd and ystd must be given, or neither")
        if (missing(stdpat)) {
          if (cv) 
            stdpat <- c(0, 1, 0, 1)
          else stdpat <- c(1, 0, 1, 0)
        }
        else {
          if (any(stdpat < 0) || all(stdpat[1:2] == 0) || all(stdpat[3:4] == 
                                                              0)) 
            stop("invalid stdpat argument")
        }
        if (stdpat[2] > 0 || stdpat[4] > 0) 
          usepattern <- TRUE
        else {
          xstd <- rep(stdpat[1], n)
          ystd <- rep(stdpat[3], n)
        }
      }
      else {
        if (is.null(ystd)) 
          stop("both of xstd and ystd must be given, or neither")
        if (!is.numeric(xstd)) 
          stop("xstd must be numeric")
        if (!is.numeric(ystd)) 
          stop("ystd must be numeric")
        if (any(xstd <= 0)) 
          stop("xstd must be positive")
        if (any(ystd <= 0)) 
          stop("ystd must be positive")
      }
      if (conf < 0 || conf >= 1) 
        stop("invalid confidence level")
      if (!is.logical(dfbeta)) 
        stop("dfbeta must be TRUE or FALSE")
      if (dfbeta & !jackknife) 
        stop("the dfbeta option only applies if jackknife=TRUE")
      X <- model.matrix(Terms, mf)
      if (ncol(X) != (1 + attr(Terms, "intercept"))) 
        stop("Deming regression requires a single predictor variable")
      xx <- X[, ncol(X), drop = FALSE]
      if (!usepattern) 
        fit <- deming.fit1(xx, Y, wt, xstd, ystd, intercept = attr(Terms, "intercept"))
      else fit <- deming.fit2(xx, Y, wt, stdpat, intercept = attr(Terms, "intercept"))
      yhat <- fit$coefficients[1] + fit$coefficients[2] * xx
      fit$residuals <- Y - yhat
    
      if (x) 
        fit$x <- X
      if (y) 
        fit$y <- Y
      if (model) 
        fit$model <- mf
      na.action <- attr(mf, "na.action")
      if (length(na.action)) 
        fit$na.action <- na.action
      fit$n <- length(Y)
      fit$terms <- Terms
      fit$call <- Call
      fit
    }
    
    deming.aux(y ~ x + 0, df, xstd=sy, ystd=sy)
    $`coefficients`
    [1] 0.000000 4.324481
    
    $se
    [1] 0.2872988 0.7163073
    
    $sigma
    [1] 2.516912
    
    $residuals
              [,1]
    1   9.19499513
    2   2.13037957
    3   3.00064886
    4   2.16751905
    5   0.00168729
    6   4.75834265
    7   3.44108236
    8   6.40028085
    9   6.63531039
    10 -1.48624851
    
    $model
                y          x     (xstd)     (ystd)
    1   2.1459817 -1.6300251 0.48826221 0.48826221
    2   1.3163362 -0.1882407 0.46002166 0.46002166
    3   1.5263967 -0.3409084 0.55771660 0.55771660
    4  -0.9078000 -0.7111417 0.81145673 0.81145673
    5  -1.6768719 -0.3881527 0.01563191 0.01563191
    6  -0.6114545 -1.2417205 0.41675425 0.41675425
    7  -0.7783790 -0.9757150 0.82498713 0.82498713
    8   1.1240046 -1.2200946 0.84072712 0.84072712
    9  -0.3091330 -1.6058442 0.35926078 0.35926078
    10  0.7215432  0.5105333 0.23674788 0.23674788
    
    $n
    [1] 10
    
    $terms
    y ~ x + 0
    ...
    

    To adapt the function I have performed, these steps:

    1 .- Load the internal functions of the package.

    deming.fit1 <- getAnywhere(deming.fit1)[[2]][[1]]
    deming.fit2 <- getAnywhere(deming.fit2)[[2]][[1]]
    

    2 .- Locate the problem and solve it, executing the function step by step with an example.

    Y <- as.matrix(model.response(mf, type = "numeric"))
    ...
    xx <- X[, ncol(X), drop = FALSE]
    

    3 .- Fix other possible error generated by the changes.

    In this case, delete the class of the output to avoid an error in the print.

    Bug report:

    Terry Therneau (the author of deming) uploaded a new version to CRAN, with this problem solved.