Search code examples
pythonpython-3.xgoogle-cloud-nl

Unable to print sentiment using google cloud natural language API


Below is the code I tried but it runs with the error shown below

  from google.cloud import bigquery
  from google.cloud.language import enums
  from google.cloud.language import types
  import sys
  import six
  from vaderSentiment.vaderSentiment import SentimentIntensityAnalyzer
  client = bigquery.Client.from_service_account_json('simple_project//MQ News Matching-2443b471b5ff.json')
  with open('articles.txt',mode='r', encoding="utf8") as reader:
  text=reader.read()
  if isinstance(text,six.binary_type):
      text = text.decode('utf-8')
      document = types.Document(content=text.encode('utf-8'),type=enums.Document.Type.PLAIN_TEXT)
      # Detect and send native Python encoding to receive correct word offsets.
      encoding = enums.EncodingType.UTF32
      if sys.maxunicode == 65535:
          encoding = enums.EncodingType.UTF16
      result = client.analyze_entity_sentiment(document, encoding)
      sentiment = client.analyze_sentiment(document=document).document_sentiment
  print('Text: {}'.format(text))
  print('Sentiment: {}, {}'.format(SentimentIntensityAnalyzer.score, sentiment.magnitude))

And the error I get is as below

print('Sentiment: {}, {}'.format(SentimentIntensityAnalyzer.score, sentiment.magnitude)) AttributeError: type object 'SentimentIntensityAnalyzer' has no attribute 'score'


Solution

  • What you want to do is this:

    from google.cloud import language
    from google.cloud.language import enums
    from google.cloud.language import types
    
    def analyze(movie_review_filename):
        """Run a sentiment analysis request on text within a passed filename."""
        client = language.LanguageServiceClient()
    
        with open(movie_review_filename, 'r') as review_file:
            # Instantiates a plain text document.
            content = review_file.read()
    
        document = types.Document(
            content=content,
            type=enums.Document.Type.PLAIN_TEXT)
        annotations = client.analyze_sentiment(document=document)
    
        # Print the results
        print_result(annotations)
    
    def print_result(annotations):
        score = annotations.document_sentiment.score
        magnitude = annotations.document_sentiment.magnitude
    
        for index, sentence in enumerate(annotations.sentences):
            sentence_sentiment = sentence.sentiment.score
            print('Sentence {} has a sentiment score of {}'.format(
                index, sentence_sentiment))
    
        print('Overall Sentiment: score of {} with magnitude of {}'.format(
            score, magnitude))
    

    You may need to set GOOGLE_APPLICATION_CREDENTIALS, if so you can do so like this:

    export GOOGLE_APPLICATION_CREDENTIALS='/path/to/your/client_secret.json'
    

    This would be the same JSON file you used in your question.

    You can find more Cloud Natural Language samples here: https://github.com/GoogleCloudPlatform/python-docs-samples/tree/master/language