I want to create a plot from the following data:
timeArray= ['11:47:46.585', '11:47:46.695', '11:47:46.805', '11:47:46.915', '11:47:47.025', '11:47:47.135', '11:47:47.245', '11:47:47.355', '11:47:47.465', '11:47:47.575', '11:47:47.685', '11:47:47.795', '11:47:47.905', '11:47:48.015', '11:47:48.125', '11:47:48.235', '11:47:48.345', '11:47:48.455', '11:47:48.565', '11:47:48.675', '11:47:48.785', '11:47:48.895', '11:47:49.005', '11:47:49.115', '11:47:49.225', '11:47:49.335', '11:47:49.445', '11:47:49.555', '11:47:49.665', '11:47:49.775', '11:47:49.885', '11:47:49.995', '11:47:50.105', '11:47:50.215', '11:47:50.325', '11:47:50.435', '11:47:50.545', '11:47:50.655', '11:47:50.765', '11:47:50.875', '11:47:50.985', '11:47:51.095', '11:47:51.205', '11:47:51.315', '11:47:51.425', '11:47:51.535', '11:47:51.645', '11:47:51.755', '11:47:51.865', '11:47:51.975', '11:47:52.085', '11:47:52.195', '11:47:52.305', '11:47:52.415']
valueArray = [10382.0, 8372.0, 11117.0, 11804.0, 10164.0, 10221.0, 10488.0, 7910.0, 12911.0, 11422.0, 15361.0, 15424.0, 10629.0, 14993.0, 13827.0, 15164.0, 10514.0, 10356.0, 14638.0, 12272.0, 14980.0, 14391.0, 12984.0, 18967.0, 15792.0, 14753.0, 16205.0, 19187.0, 13922.0, 10787.0, 14500.0, 12918.0, 13985.0, 14695.0, 14014.0, 12087.0, 12163.0, 11424.0, 8598.0, 8573.0, 9986.0, 10315.0, 11449.0, 9146.0, 11160.0, 6861.0, 10211.0, 9097.0, 8443.0, 5446.0, 6354.0, 6829.0, 5786.0, 7860.0]
timeArray will be x-axis, valueArray will be y-axis.
plot line looks like this:
import matplotlib.pyplot as plt
plt.plot(timeArray,valueArray,'r', label='values over time')
And I'm getting this graph:
I have used: plt.gcf().autofmt_xdate()
, but still getting one time over the next.
I have also tried:
xaxis = np.linspace(min(timeArray),max(timeArray), 10)
plt.xticks(xaxis)
but i got a typeError: ufunc 'multiply' did not contain a loop with signature matching types dtype('<U32') dtype('<U32') dtype('<U32')
Is there a simple way to keep the data as it is but without showing every single time with microseconds?
I'd suggest you convert your times to datetime
objects rather than strings, and then use matplotlib.mdates.DateFormatter()
with an appropriate date format:
import matplotlib.dates as mdates
import datetime
fmt = mdates.DateFormatter('%H:%M:%S')
timeArray = [datetime.datetime.strptime(i, '%H:%M:%S.%f') for i in timeArray]
fig, ax = plt.subplots()
plt.plot(timeArray,valueArray,'r', label='values over time')
ax.xaxis.set_major_formatter(fmt)
The result: