I have a table like blow: I could draw simple PCA plot with 2 dimension based on below commend but I would like to have 3D PCA based on col-names?
4_rep1 4_rep2 8_rep1 8_rep2 7_rep1 7_rep2 3_rep1 3_rep2
ENSG00000000003 2202 1787 2357 2257 945 977 1362 8536
ENSG00000000005 33 15 13 12 21 37 20 15
ENSG00000000419 557 442 696 679 359 398 279 314
ENSG00000000457 343 251 218 215 212 219 221 254
ENSG00000000460 276 242 189 202 123 126 206 218
plotPCA(newSeqExpressionSet(as.matrix(data),col=colors))
Thank you for any suggestion, in advance!
assuming you need a scatter 3 d plot with eigenvectors as axis and the weights of the variable as coordinates, you can find several options:
# here the data
results <- data.frame(matrix(c(2202,33,557,1787,15,442,2357,13,696,2257,12,679),nrow=3,ncol=4))
colnames(results) <- c("4_rep1","4_rep2","8_rep1","8_rep2")
rownames(results) <- c("ENSG00000000003","ENSG00000000005","ENSG00000000419")
# then a small transformation
library(data.table)
t_results <- transpose(results)
colnames(t_results) <- rownames(results)
rownames(t_results) <- colnames(results)
#lastly the plot
library(scatterplot3d)
scatterplot3d(t_results[,1],t_results[,2],t_results[,3], main="Very simple")
a bit more cool:
library(rgl)
plot3d(results[,1] ,results[,2],results[,3], col="red", size=3)
And this one:
p <- plot_ly(t_results, x = ~ENSG00000000003, y = ~ENSG00000000005, z = ~ENSG00000000419) %>%
add_markers() %>%
layout(scene = list(xaxis = list(title = 'ENSG00000000003'),
yaxis = list(title = 'ENSG00000000005'),
zaxis = list(title = 'ENSG00000000419')))
p