We have two unsigned counters, and we need to compare them to check for some error conditions:
uint32_t a, b;
// a increased in some conditions
// b increased in some conditions
if (a/2 > b) {
perror("Error happened!");
return -1;
}
The problem is that a
and b
will overflow some day. If a
overflowed, it's still OK. But if b
overflowed, it would be a false alarm. How to make this check bulletproof?
I know making a
and b
uint64_t
would delay this false-alarm. but it still could not completely fix this issue.
===============
Let me clarify a little bit: the counters are used to tracking memory allocations, and this problem is found in dmalloc/chunk.c:
#if LOG_PNT_SEEN_COUNT
/*
* We divide by 2 here because realloc which returns the same
* pointer will seen_c += 2. However, it will never be more than
* twice the iteration value. We divide by two to not overflow
* iter_c * 2.
*/
if (slot_p->sa_seen_c / 2 > _dmalloc_iter_c) {
dmalloc_errno = ERROR_SLOT_CORRUPT;
return 0;
}
#endif
I think you misinterpreted the comment in the code:
We divide by two to not overflow
iter_c * 2
.
No matter where the values are coming from, it is safe to write a/2
but it is not safe to write a*2
. Whatever unsigned type you are using, you can always divide a number by two while multiplying may result in overflow.
If the condition would be written like this:
if (slot_p->sa_seen_c > _dmalloc_iter_c * 2) {
then roughly half of the input would cause a wrong condition. That being said, if you worry about counters overflowing, you could wrap them in a class:
class check {
unsigned a = 0;
unsigned b = 0;
bool odd = true;
void normalize() {
auto m = std::min(a,b);
a -= m;
b -= m;
}
public:
void incr_a(){
if (odd) ++a;
odd = !odd;
normalize();
}
void incr_b(){
++b;
normalize();
}
bool check() const { return a > b;}
}
Note that to avoid the overflow completely you have to take additional measures, but if a
and b
are increased more or less the same amount this might be fine already.