Given a dataframe (df_original
) that potentially can have a variable amount of rows and columns, how can I add one column that "merges" all values of the columns seperated by a character (e.g. by _
) ?
The name of that column should also consist out of a merge of the other column names. The output should look like df_final
in the example code.
Example code:
import pandas as pd
d = {'col1': ["a", "b", "c"], 'col2': ["a", "b", "c"], 'col3': ["a", "b", "c"], 'col99': ["a", "b", "c"]}
df_original = pd.DataFrame(data=d)
d2 = {'col1': ["a", "b", "c"], 'col2': ["a", "b", "c"], 'col3': ["a", "b", "c"], 'col99': ["a", "b", "c"], 'col1_col2_col3_col99' : ["a_a_a_a", "b_b_b_b", "c_c_c_c"]}
df2 = pd.DataFrame(data=d2)
cols = ["col1","col2","col3","col99","col1_col2_col3_col99"]
df_final = df2[cols]
Using pd.DataFrame.apply
:
df['_'.join(df.columns)] = df.apply('_'.join, axis=1)
print(df)
col1 col2 col3 col99 col1_col2_col3_col99
0 a a a a a_a_a_a
1 b b b b b_b_b_b
2 c c c c c_c_c_c