If I multiply a vector x
(1,n) with itself tansposed, i.e. np.dot(x.T, x)
I will get a matrix in quadratic form.
If I have a matrix Xmat
(k, n), how can I efficiently compute rowwise dot product and select only upper triangular elements?
So, atm. I have the following solution:
def compute_interaction(x):
xx = np.reshape(x, (1, x.size))
return np.concatenate((x, np.dot(xx.T, xx)[np.triu_indices(xx.size)]))
Then compute_interaction(np.asarray([2,5]))
yield array([ 2, 5, 4, 10, 25])
.
And when I have a matrix I use
np.apply_along_axis(compute_interaction, axis=1, arr = np.asarray([[2,5], [3,4], [8,9]]))
which yields what I want:
array([[ 2, 5, 4, 10, 25],
[ 3, 4, 9, 12, 16],
[ 8, 9, 64, 72, 81]])
Is there any other way than to compute this using apply_along_axis
? Maybe using np.einsum
?
Approach #1
One solution with np.triu_indices
would be -
r,c = np.triu_indices(arr.shape[1])
out = np.concatenate((arr,arr[:,r]*arr[:,c]),axis=1)
Approach #2
Faster one with slicing
-
def pairwise_col_mult(a):
n = a.shape[1]
N = n*(n+1)//2
idx = n + np.concatenate(( [0], np.arange(n,0,-1).cumsum() ))
start, stop = idx[:-1], idx[1:]
out = np.empty((a.shape[0],n+N),dtype=a.dtype)
out[:,:n] = a
for j,i in enumerate(range(n)):
out[:,start[j]:stop[j]] = a[:,[i]] * a[:,i:]
return out
Timings -
In [254]: arr = np.random.randint(0,9,(10000,100))
In [255]: %%timeit
...: r,c = np.triu_indices(arr.shape[1])
...: out = np.concatenate((arr,arr[:,r]*arr[:,c]),axis=1)
1 loop, best of 3: 577 ms per loop
In [256]: %timeit pairwise_col_mult(arr)
1 loop, best of 3: 233 ms per loop