I have a cdf of datetime list. After running the following code, where objDate
is a list of datetime values (format: %Y-%m-%d), I get the cdf with ticks on x axis showing every second year in the range of values. How can I get customized labels for ticks along x-axis by specifying:
1. the range (min year and max year)
2. interval (lets say 6 months apart, so that tick labels are like 01/17, 07/17, 01/18, 07/18, ... )
import matplotlib.pyplot as plt
import pandas as pd
ser = pd.Series(objDate)
ser.hist(cumulative=True, density=1, bins=500, histtype='step')
plt.show()
As for the second question, you may use matplotlib.dates
locators and formatters. Those work fine in the case of a hist
.
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
import matplotlib.dates as dates
import numpy as np; np.random.seed(42)
import pandas as pd
objDate = dates.num2date(np.random.normal(735700, 300, 700))
ser = pd.Series(objDate)
ax = ser.hist(cumulative=True, density=1, bins=500, histtype='step', linewidth=2)
ax.xaxis.set_major_locator(dates.MonthLocator([1,7]))
ax.xaxis.set_major_formatter(dates.DateFormatter("%m/%y"))
plt.setp(ax.get_xticklabels(), rotation=60)
plt.show()
For the first question, this is not easy, because matplotlib always assumes the complete axis to be ticked. A solution would be to subclass the locator in use and allow it to take restrictive arguments.
from datetime import datetime
import matplotlib.pyplot as plt
plt.rcParams['axes.axisbelow'] = True
import matplotlib.dates as dates
import numpy as np; np.random.seed(42)
import pandas as pd
objDate = dates.num2date(np.random.normal(735700, 300, 700))
ser = pd.Series(objDate)
ax = ser.hist(cumulative=True, density=1, bins=500, histtype='step', linewidth=2)
class RestrictedLocator(dates.MonthLocator):
def __init__(self, dmin=None, dmax=None, **kw):
self.dmin = dmin
self.dmax = dmax
dates.MonthLocator.__init__(self, **kw)
def __call__(self):
try:
dmin, dmax = self.viewlim_to_dt()
except ValueError:
return []
self.dmin = self.dmin.replace(tzinfo=dmin.tzinfo)
self.dmax = self.dmax.replace(tzinfo=dmin.tzinfo)
dmin = np.max([dmin, self.dmin])
dmax = np.min([dmax, self.dmax])
return self.tick_values(dmin, dmax)
loc = RestrictedLocator(dmin=datetime(2015,1,1),
dmax = datetime(2017,12,31),
bymonth=[1,7])
ax.xaxis.set_major_locator(loc)
ax.xaxis.set_major_formatter(dates.DateFormatter("%m/%y"))
plt.setp(ax.get_xticklabels(), rotation=60)
plt.show()