I would like to do calculations across columns in my data, by row. The calculations are "moving" in that I would like to know the difference between two numbers in column 1 and 2, then columns 3 and 4, and so on. I have looked at "loops" and "rollapply" functions, but could not figure this out. Below are three options of what was attempted. Only the third option gives me the result I am after, but it is very lengthy code and also does not allow for automation (the input data will be a much larger matrix, so typing out the calculation for each row won't work). Please advice how to make this code shorter and/or any other packages/functions to check out which will do the job. THANK YOU!
Sample data set
a<- c(1,2,3, 4, 5)
b<- c(1,2,3, 4, 5)
c<- c(1,2,3, 4, 5)
test.data <- data.frame(cbind(a,b*2,c*10))
names(test.data) <- c("a", "b", "c")
Sample of calculations attempted:
OPTION 1
require(zoo)
rollapply(test.data, 2, diff, fill = NA, align = "right", by.column=FALSE)
RESULT 1 (not what we're after. What we need is at the bottom of Option 3)
# a b c
#[1,] NA NA NA
#[2,] 1 2 10
#[3,] 1 2 10
#[4,] 1 2 10
#[5,] 1 2 10
OPTION 2:
results <- for (i in 1:length(nrow(test.data))) {
diff(as.numeric(test.data[i,]), lag=1)
print(results)}
RESULT 2: (again not what we're after)
# NULL
OPTION 3: works, but long way, so would like to simplify code and make generic for any length of observations in my dataframe and any number of columns (i.e. more than 3). I would like to "automate" the steps below, if know number of observations (i.e. rows).
row1=diff(as.numeric(test[1,], lag=1))
row2=diff(as.numeric(test[2,], lag=1))
row3=diff(as.numeric(test[3,], lag=1))
row4=diff(as.numeric(test[4,], lag=1))
row5=diff(as.numeric(test[5,], lag=1))
results.OK=cbind.data.frame(row1, row2, row3, row4, row5)
transpose.results.OK=data.frame(t(as.matrix(results.OK)))
names(transpose.results.OK)=c("diff.ab", "diff.bc")
Final.data = transpose.results.OK
print(Final.data)
RESULT 3: (THIS IS WHAT I WOULD LIKE TO GET, "row1" can be "obs1" etc)
# diff.ab diff.bc
#row1 1 8
#row2 2 16
#row3 3 24
#row4 4 32
#row5 5 40
THE END
Here are the 3 options redone plus a 4th option:
# 1
library(zoo)
d <- t(rollapplyr(t(test.data), 2, diff, by.column = FALSE))
# 2
d <- test.data[-1]
for (i in 1:nrow(test.data)) d[i, ] <- diff(unlist(test.data[i, ]))
# 3
d <- t(diff(t(test.data)))
# 4 - also this works
nc <- ncol(test.data)
d <- test.data[-1] - test.data[-nc]
For any of them to set the names:
colnames(d) <- paste0("diff.", head(names(test.data), -1), colnames(d))
(2) and (4) give this data.frame and (1) and (3) give the corresponding matrix:
> d
diff.ab diff.bc
1 1 8
2 2 16
3 3 24
4 4 32
5 5 40
Use as.matrix
or as.data.frame
if you want the other.