We are using Lagom for developing our set of microservices. The trick here is that although we are using event sourcing and persisting events into cassandra but we have to store the data in one of the graph DB as well since it will be the one that will be serving most of the queries because of the use case.
As per the Lagom's documentation, all the insertion into Graph database(or any other database) has to be done in ReadSideProcecssor
after the command handler persist the events into cassandra as followed by philosophy of CQRS.
Now here is the problem which we are facing. We believe that the ReadSideProcecssor
is a listener which gets triggered after the events are generated and persisted. What we want is we could return the response back from the ReadSideProcecssor
to the ServiceImpl
. Example when a user is added to the system, the unique id generated by the graph has to be returned as one of the response headers. How that can be achieved in Lagom since the response is constructed from setCommandHandler
and not the ReadSideProcessor
.
Also, we need to make sure that if due to any error at graph side, the API should notify the client that the request has failed but again exceptions occuring in ReadSideProcessor
are not propagated to either PersistentEntity
or ServiceImpl
class. How can that be achieved as well?
Any helps are much appreciated.
The read side processor is not a listener that is attached to the command - it is actually completely disconnected from the persistent entity, it may be running on a different node, at a different time, perhaps even years in the future if you add a new read side processor that first comes up to speed with all the old events in history. If the read side processor were connected synchronously to the command, then it would not be CQRS, there would not be segregation between the command and the query side.
Read side processors essentially poll the database for new events, processing them as they detect them. You can add a new read side processor at any time, and it will get all events from all of history, not just the new ones that are added, this is one of the great things about event sourcing, you don't need to anticipate all your query needs from the start, you can add them as the query need comes.
To further explain why you don't want a connection between the two - what happens if the event persist succeeds, but the update on the graph db fails? Perhaps the graph db is crashed. Does the command have to retry? Does the event have to be deleted? What happens if the node doing the update itself crashes before it has an opportunity to fix the problem? Now your read side is in an inconsistent state from your entities. Connecting them leads to inconsistency in many failure scenarios - for example, like when you update your address with a utility company, and but your bills still go to the old address, and you contact them, and they say "yes, your new address is updated in our system", but they still go to the old address - that's the sort of terrible user experience that you are signing your users up for if you try to connect your read side and write side together. Disconnecting allows Lagom to ensure consistency between the events you have emitted on the write side, and the consumption of them on the read side.
So to address your specific concerns: ID generation should be done on the write side, or, if a subsequent ID is generated on the read side, it should also provide a way of mapping the IDs on the write side to the read side ID. And as for handling errors on the read side - all validation should be done on the write side - the write side should ensure that it never emits an event that is invalid.
Now if the read side processor encounters something that is invalid, then it has two options. One option is it could fail. In many cases, this is a good option, since if something is invalid or inconsistent, then it's likely that either you have a bug or some form of corruption. What you don't want to do is continue processing as if everything is happy, since that might make the data corruption or inconsistency even worse. Instead the read side processor stops, your monitoring should then detect the error, and you can go in and work out either what the bug is or fix the corruption. Of course, there are downsides to doing this, your read side will start lagging behind the write side while it's unable to process new events. But that's also an advantage of CQRS - the write side is able to continue working, continue enforcing consistency, etc, the failure is just isolated to the read side, and only in updating the read side. Instead of your whole system going down and refusing to accept new requests due to this bug, it's isolated to just where the problem is.
The other option that the read side has is it can store the error somewhere - eg, store the event in a dead letter table, or raise some sort of trouble ticket, and then continue processing. This way, you can go and fix the event after the fact. This ensures greater availability, but does come at the risk that if that event that it failed to process was important to the processing of subsequent events, you've potentially just got yourself into a bigger mess.
Now this does introduce specific constraints on what you can and can't do, but I can't really anticipate those without specific knowledge of your use case to know how to address them. A common constraint is set validation - for example, how do you ensure that email addresses are unique to a single user in your system? Greg Young (the CQRS guy) wrote this blog post about those types of problems:
http://codebetter.com/gregyoung/2010/08/12/eventual-consistency-and-set-validation/