I am using the newest version of Tensorflow and Keras. I have seen the example where datasets like the MNIST ist loaded and used.
But how do I do this with local images?
You can also use ImageDataGenerator
, which shuffles your data and can do augmentation for you (see https://keras.io/preprocessing/image/ ).
from keras.preprocessing.image import ImageDataGenerator
image_datagen = ImageDataGenerator(rescale=1./255)
image_generator = image_datagen.flow_from_directory(
'your_training_images/train',
target_size=(image_height, image_width),
batch_size=batch_size,
class_mode='binary')