Search code examples
pythonsliceadjacency-matrixnumpy-slicing

Creating adjancency matrix from random indexes using slicing


Given an adjacency list Y:

Y = np.array([[0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
              [0., 0., 0., 0., 0., 1., 1., 0., 1., 0., 0., 0., 0., 0., 0.],
              [0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0.],
              [0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 1., 0., 0., 1., 0.],
              [0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 1., 0.],
              [0., 1., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.],
              [0., 1., 0., 1., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 1.],
              [0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 0., 0., 0., 0.],
              [1., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 1.],
              [0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0.],
              [0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 0., 0., 0., 1., 0.],
              [0., 0., 0., 0., 0., 0., 0., 0., 1., 0., 0., 0., 0., 1., 1.],
              [0., 0., 0., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0., 0., 0.],
              [0., 0., 0., 1., 1., 0., 0., 0., 0., 0., 1., 1., 0., 0., 0.],
              [0., 0., 0., 0., 0., 0., 1., 0., 1., 0., 0., 1., 0., 0., 0.]])

and list of indexes of random numbers:

idx = sorted(random.sample(range(0, len(Y)), 5))
[0, 3, 7, 10, 14]

I would like 0th, 3rd, 7th, 10th and 14th row/column of the adjacency matrix extracted such that my new Yhat becomes the point where the 5 rows/columns overlaps such as: overlap

meaning my Yhat becomes

Yhat = np.array([[0,0,0,0,0],
                 [0,0,0,1,0],
                 [0,0,0,0,0],
                 [0,1,0,0,0],
                 [0,0,0,0,0]])

Right now I am doing it with loops and checks, but I feel like it should be possible to do with numpy list slicing, any hints would be appreciated!


Solution

  • This seems to do the trick, first slice the idx rows, then slice the idx columns: Y[idx][:,idx]