I have a dataframe of an experiment, where stimulus is shown to participants, and time is measured continuously.
# reprex
df <-
tibble(stim = c(NA, NA, NA, NA, "a", "b", NA, "c", NA, "d", NA, NA, NA),
time = 0:12)
# A tibble: 13 x 2
stim time
<chr> <int>
1 NA 0
2 NA 1
3 NA 2
4 NA 3
5 a 4
6 b 5
7 NA 6
8 c 7
9 NA 8
10 d 9
11 NA 10
12 NA 11
13 NA 12
I want to create a generalized solution, using tidyverse functions to drop the data 1 second before and 2 seconds after the first and last marker, respectively. Using tidyverse, I thought this will work, but it throws an uninformative error.
df %>%
# store times for first and last stim
mutate(first_stim = drop_na(stim) %>% pull(time) %>% first(),
last_stim = drop_na(stim) %>% pull(time) %>% last()) %>%
# filter df based on new variables
filter(time >= first(first_stim) - 1 &
time <= first(last_stim) + 2)
Error in mutate_impl(.data, dots) : bad value
So I made a pretty ugly base r code to overcome this issue by changing the mutate:
df2 <- df %>%
mutate(first_stim = .[!is.na(.$stim), "time"][1,1],
last_stim = .[!is.na(.$stim), "time"][nrow(.[!is.na(.$stim), "time"]), 1])
# A tibble: 13 x 4
stim time first_stim last_stim
<chr> <int> <tibble> <tibble>
1 NA 0 4 9
2 NA 1 4 9
3 NA 2 4 9
4 NA 3 4 9
5 a 4 4 9
6 b 5 4 9
7 NA 6 4 9
8 c 7 4 9
9 NA 8 4 9
10 d 9 4 9
11 NA 10 4 9
12 NA 11 4 9
13 NA 12 4 9
Now I would only need to filter based on the new variables first_stim - 1
and last_stim + 2
. But filter fails too:
df2 %>%
filter(time >= first(first_stim) - 1 &
time <= first(last_stim) + 2)
Error in filter_impl(.data, quo) :
Not compatible with STRSXP: [type=NULL].
I was able to do it in base R, but it is really ugly:
df2[(df2$time >= (df2[[1, "first_stim"]] - 1)) &
(df2$time <= (df2[[1, "last_stim"]] + 2))
,]
The desired output should look like this:
# A tibble: 13 x 2
stim time
<chr> <int>
4 NA 3
5 a 4
6 b 5
7 NA 6
8 c 7
9 NA 8
10 d 9
11 NA 10
12 NA 11
I believe that the errors are related to dplyr::nth()
and related functions. And I've found some old issues that are related to this behavior, but should no longer exist https://github.com/tidyverse/dplyr/issues/1980
I would really appreciate if someone could highlight what is the problem, and how to do this in a tidy way.
You could use a combination of is.na
and which
...
library(dplyr)
df <-
tibble(stim = c(NA, NA, NA, NA, "a", "b", NA, "c", NA, "d", NA, NA, NA),
time = 0:12)
df %>%
filter(row_number() >= first(which(!is.na(stim))) - 1 &
row_number() <= last(which(!is.na(stim))) + 2)
# # A tibble: 9 x 2
# stim time
# <chr> <int>
# 1 NA 3
# 2 a 4
# 3 b 5
# 4 NA 6
# 5 c 7
# 6 NA 8
# 7 d 9
# 8 NA 10
# 9 NA 11
you could also make your first attempt work with a little modification...
df %>%
mutate(first_stim = first(drop_na(., stim) %>% pull(time)),
last_stim = last(drop_na(., stim) %>% pull(time))) %>%
filter(time >= first(first_stim) - 1 &
time <= first(last_stim) + 2)