Search code examples
pythondifferential-equationscalculusconvergence

Why isn't this centered fourth-order-accurate finite differencing scheme yielding fourth-order convergence for solving pdes


I am solving the dissipation equation enter image description here using a finite differencing scheme. The initial condition is a half sin wave with Dirchlet boundary conditions on both sides. I insert an extra point on each side of the domain to enforce the Dirchlet boundary condition while maintaining fourth-order-accuracy, then use forwards-euler to evolve it in time enter image description here

When I switch from the second-order-accurate stencil enter image description here to the fourth-order-accurate stencil enter image description here/12.

I do not see an improvement in the rate of convergence when I plot enter image description here vs an estimate of the error.

I wrote and commented a code that shows my problem. When I use the 5 point strategy, my rate of convergence is the same:

second-order-accurate stencil fourth-order-accurate stencil

Why is this happening? Why isn't the fourth-order-accurate stencil helping the convergence rate? I combed over this carefully and I think that there must be some issue in my understanding.

# Let's evolve the diffusion equation in time with Dirchlet BCs

# Load modules
import numpy as np
import matplotlib.pyplot as plt

# Domain size
XF = 1

# Viscosity
nu = 0.01

# Spatial Differentiation function, approximates d^u/dx^2
def diffusive_dudt(un, nu, dx, strategy='5c'):
    undiff = np.zeros(un.size, dtype=np.float128)

    # O(h^2)
    if strategy == '3c':
        undiff[2:-2] = nu * (un[3:-1] - 2 * un[2:-2] + un[1:-3]) / dx**2

    # O(h^4)
    elif strategy == '5c':
        undiff[2:-2] = nu * (-1 * un[4:] + 16 * un[3:-1] - 30 * un[2:-2] + 16 * un[1:-3] - un[:-4]) / (12 * dx**2 )
    else: raise(IOError("Invalid diffusive strategy")) ; quit()
    return undiff

def geturec(x, nu=.05, evolution_time=1, u0=None, n_save_t=50, ubl=0., ubr=0., diffstrategy='5c', dt=None, returndt=False):

    dx = x[1] - x[0]

    # Prescribde cfl=0.1 and ftcs=0.2
    if dt is not None: pass
    else: dt = min(.1 * dx / 1., .2 / nu * dx ** 2)
    if returndt: return dt

    nt = int(evolution_time / dt)
    divider = int(nt / float(n_save_t))
    if divider ==0: raise(IOError("not enough time steps to save %i times"%n_save_t))

    # The default initial condition is a half sine wave.
    u_initial = ubl + np.sin(x * np.pi)
    if u0 is not None: u_initial = u0
    u = u_initial
    u[0] = ubl
    u[-1] = ubr

    # insert ghost cells; extra cells on the left and right
    # for the edge cases of the finite difference scheme
    x = np.insert(x, 0, x[0]-dx)
    x = np.insert(x, -1, x[-1]+dx)
    u = np.insert(u, 0, ubl)
    u = np.insert(u, -1, ubr)

    # u_record holds all the snapshots. They are evenly spaced in time,
    # except the final and initial states
    u_record = np.zeros((x.size, int(nt / divider + 2)))

    # Evolve through time
    ii = 1
    u_record[:, 0] = u
    for _ in range(nt):
        un = u.copy()
        dudt = diffusive_dudt(un, nu, dx, strategy=diffstrategy)

        # forward euler time step
        u = un + dt * dudt

        # Save every xth time step
        if _ % divider == 0:
            #print "C # ---> ", u * dt / dx
            u_record[:, ii] = u.copy()
            ii += 1
    u_record[:, -1] = u
    return u_record[1:-1, :]

# define L-1 Norm
def ul1(u, dx): return np.sum(np.abs(u)) / u.size

# Now let's sweep through dxs to find convergence rate

# Define dxs to sweep
xrang = np.linspace(350, 400, 4)

# this function accepts a differentiation key name and returns a list of dx and L-1 points
def errf(strat):

   # Lists to record dx and L-1 points
   ypoints = []
   dxs= []

   # Establish truth value with a more-resolved grid
   x = np.linspace(0, XF, 800) ; dx = x[1] - x[0]

   # Record truth L-1 and dt associated with finest "truth" grid
   trueu = geturec(nu=nu, x=x, diffstrategy=strat, evolution_time=2, n_save_t=20, ubl=0, ubr=0)
   truedt = geturec(nu=nu, x=x, diffstrategy=strat, evolution_time=2, n_save_t=20, ubl=0, ubr=0, returndt=True)
   trueqoi = ul1(trueu[:, -1], dx)

   # Sweep dxs
   for nx in xrang:
       x = np.linspace(0, XF, nx) ; dx = x[1] - x[0]
       dxs.append(dx)

       # Run solver, hold dt fixed
       u = geturec(nu=nu, x=x, diffstrategy='5c', evolution_time=2, n_save_t=20, ubl=0, ubr=0, dt=truedt)

       # record |L-1(dx) - L-1(truth)|
       qoi = ul1(u[:, -1], dx)
       ypoints.append(np.abs(trueqoi - qoi))

   return dxs, ypoints

# Plot results. The fourth order method should have a slope of 4 on the log-log plot.
from scipy.optimize import minimize as mini
strategy = '5c'
dxs, ypoints = errf(strategy)
def fit2(a): return 1000 * np.sum((a * np.array(dxs) ** 2 - ypoints) ** 2)
def fit4(a): return 1000 * np.sum((np.exp(a) * np.array(dxs) ** 4 - ypoints) ** 2)
a = mini(fit2, 500).x
b = mini(fit4, 11).x
plt.plot(dxs,  a * np.array(dxs)**2, c='k', label=r"$\nu^2$", ls='--')
plt.plot(dxs,  np.exp(b) * np.array(dxs)**4, c='k', label=r"$\nu^4$")
plt.plot(dxs, ypoints, label=r"Convergence", marker='x')
plt.yscale('log')
plt.xscale('log')
plt.xlabel(r"$\Delta X$")
plt.ylabel("$L-L_{true}$")
plt.title(r"$\nu=%f, strategy=%s$"%(nu, strategy))
plt.legend()
plt.savefig('/Users/kilojoules/Downloads/%s.pdf'%strategy, bbox_inches='tight')

Solution

  • You used the wrong error metric. If you compare the fields on a point-by-point basis you'll get the convergence rate you were after.