Search code examples
c++openmpintelgnureduction

Intel compiler (C++) issue with OpenMP reduction on std::vector


Since OpenMP 4.0, user-defined reduction is supported. So I defined the reduction on std::vector in C++ exactly from here. It works fine with GNU/5.4.0 and GNU/6.4.0, but it returns random values for the reduction with intel/2018.1.163.

This is the example:

#include <iostream>
#include <vector>
#include <algorithm>
#include "omp.h"

#pragma omp declare reduction(vec_double_plus : std::vector<double> : \
                              std::transform(omp_out.begin(), omp_out.end(), omp_in.begin(), omp_out.begin(), std::plus<double>())) \
                    initializer(omp_priv = omp_orig)

int main() {

    omp_set_num_threads(4);
    int size = 100;
    std::vector<double> w(size,0);

#pragma omp parallel for reduction(vec_double_plus:w)
    for (int i = 0; i < 4; ++i)
        for (int j = 0; j < w.size(); ++j)
            w[j] += 1;

    for(auto i:w)
        if(i != 4)
            std::cout << i << std::endl;

    return 0;
}

Each thread adds 1 to all w entries (its local w) and at the end all of them are added to together (reduction). The result for all w entries is 4 with GNU, but random with the intel compiler. Does anyone have any idea what is happening here?


Solution

  • This appears to be a bug in the Intel compiler, I can reliably reproduce it with a C example not involving vectors:

    #include <stdio.h>
    
    void my_sum_fun(int* outp, int* inp) {
        printf("%d @ %p += %d @ %p\n", *outp, outp, *inp, inp);
        *outp = *outp + *inp;
    }
    
    int my_init(int* orig) {
        printf("orig: %d @ %p\n", *orig, orig);
        return *orig;
    }
    
    #pragma omp declare reduction(my_sum : int : my_sum_fun(&omp_out, &omp_in) initializer(omp_priv = my_init(&omp_orig))
    
    int main()
    {   
        int s = 0;
        #pragma omp parallel for reduction(my_sum : s)
        for (int i = 0; i < 2; i++)
            s+= 1;
    
        printf("sum: %d\n", s);
    }
    

    Output:

    orig: 0 @ 0x7ffee43ccc80
    0 @ 0x7ffee43ccc80 += 1 @ 0x7ffee43cc780
    orig: 1 @ 0x7ffee43ccc80
    1 @ 0x7ffee43ccc80 += 2 @ 0x2b56d095ca80
    sum: 3
    

    It applies the reduction operation to the original variable before initializing the private copy from the original value. This leads to the wrong result.

    You can manually add a barrier as a workaround:

    #pragma omp parallel reduction(vec_double_plus : w)
    {
      #pragma omp for
      for (int i = 0; i < 4; ++i)
        for (int j = 0; j < w.size(); ++j)
          w[j] += 1;
      #pragma omp barrier
    }