I'm trying to transform my dataset to a normal distribution.
0 8.298511e-03
1 3.055319e-01
2 6.938647e-02
3 2.904091e-02
4 7.422441e-02
5 6.074046e-02
6 9.265747e-04
7 7.521846e-02
8 5.960521e-02
9 7.405019e-04
10 3.086551e-02
11 5.444835e-02
12 2.259236e-02
13 4.691038e-02
14 6.463911e-02
15 2.172805e-02
16 8.210005e-02
17 2.301189e-02
18 4.073898e-07
19 4.639910e-02
20 1.662777e-02
21 8.662539e-02
22 4.436425e-02
23 4.557591e-02
24 3.499897e-02
25 2.788340e-02
26 1.707958e-02
27 1.506404e-02
28 3.207647e-02
29 2.147011e-03
30 2.972746e-02
31 1.028140e-01
32 2.183737e-02
33 9.063370e-03
34 3.070437e-02
35 1.477440e-02
36 1.036309e-02
37 2.000609e-01
38 3.366233e-02
39 1.479767e-03
40 1.137169e-02
41 1.957088e-02
42 4.921303e-03
43 4.279257e-02
44 4.363429e-02
45 1.040123e-01
46 2.930958e-02
47 1.935434e-03
48 1.954418e-02
49 2.980253e-02
50 3.643772e-02
51 3.411437e-02
52 4.976063e-02
53 3.704608e-02
54 7.044161e-02
55 8.101365e-03
56 9.310477e-03
57 7.626637e-02
58 8.149728e-03
59 4.157399e-01
60 8.200258e-02
61 2.844295e-02
62 1.046601e-01
63 6.565680e-02
64 9.825436e-04
65 9.353639e-02
66 6.535298e-02
67 6.979044e-04
68 2.772859e-02
69 4.378422e-02
70 2.020185e-02
71 4.774493e-02
72 6.346146e-02
73 2.466264e-02
74 6.636585e-02
75 2.548934e-02
76 1.113937e-06
77 5.723409e-02
78 1.533288e-02
79 1.027341e-01
80 4.294570e-02
81 4.844853e-02
82 5.579620e-02
83 2.531824e-02
84 1.661426e-02
85 1.430836e-02
86 3.157232e-02
87 2.241722e-03
88 2.946256e-02
89 1.038383e-01
90 1.868837e-02
91 8.854596e-03
92 2.391759e-02
93 1.612714e-02
94 1.007823e-02
95 1.975513e-01
96 3.581289e-02
97 1.199747e-03
98 1.263381e-02
99 1.966746e-02
100 4.040786e-03
101 4.497264e-02
102 4.030524e-02
103 8.627087e-02
104 3.248317e-02
105 5.727582e-03
106 1.781355e-02
107 2.377991e-02
108 4.299568e-02
109 3.664353e-02
110 5.167902e-02
111 4.006848e-02
112 7.072990e-02
113 6.744938e-03
114 1.064900e-02
115 9.823497e-02
116 8.992714e-03
117 1.792453e-01
118 6.817763e-02
119 2.588843e-02
120 1.048027e-01
121 6.468491e-02
122 1.035536e-03
123 8.800684e-02
124 5.975065e-02
125 7.365861e-04
126 4.209485e-02
127 4.232421e-02
128 2.371866e-02
129 5.894714e-02
130 7.177195e-02
131 2.116566e-02
132 7.579219e-02
133 3.174744e-02
134 0.000000e+00
135 5.786439e-02
136 1.458493e-02
137 9.820156e-02
138 4.373873e-02
139 4.271649e-02
140 5.532575e-02
141 2.311324e-02
142 1.644508e-02
143 1.328273e-02
144 3.908473e-02
145 2.355468e-03
146 2.519321e-02
147 1.131868e-01
148 1.708967e-02
149 1.027661e-02
150 2.439899e-02
151 1.604058e-02
152 1.134323e-02
153 2.247722e-01
154 3.408590e-02
155 2.222239e-03
156 1.659830e-02
157 2.284733e-02
158 4.618550e-03
159 3.674162e-02
160 4.131283e-02
161 8.846273e-02
162 2.504404e-02
163 6.004396e-03
164 1.986309e-02
165 2.347111e-02
166 3.865636e-02
167 3.672307e-02
168 6.658419e-02
169 3.726879e-02
170 7.600138e-02
171 7.184871e-03
172 1.142840e-02
173 9.741311e-02
174 8.165448e-03
175 1.529210e-01
176 6.648081e-02
177 2.617601e-02
178 9.547816e-02
179 6.857775e-02
180 8.129399e-04
181 7.107914e-02
182 5.884794e-02
183 8.398721e-04
184 6.972981e-02
185 4.461767e-02
186 2.264404e-02
187 5.566633e-02
188 6.595136e-02
189 2.301914e-02
190 7.488919e-02
191 3.108619e-02
192 4.989364e-07
193 4.834949e-02
194 1.422578e-02
195 9.398186e-02
196 4.870391e-02
197 3.841369e-02
198 6.406801e-02
199 2.603315e-02
200 1.692629e-02
201 1.409982e-02
202 4.099215e-02
203 2.093724e-03
204 2.640732e-02
205 1.032129e-01
206 1.581881e-02
207 8.977325e-03
208 1.941141e-02
209 1.502126e-02
210 9.923589e-03
211 2.757357e-01
212 3.096234e-02
213 4.388900e-03
214 1.784778e-02
215 2.179550e-02
216 3.944159e-03
217 3.703552e-02
218 4.033897e-02
219 1.157076e-01
220 2.400446e-02
221 5.761179e-03
222 1.899621e-02
223 2.401468e-02
224 4.458745e-02
225 3.357898e-02
226 5.331003e-02
227 3.488753e-02
228 7.466599e-02
229 6.075236e-03
230 9.815318e-03
231 9.598735e-02
232 7.103607e-03
233 1.100602e-01
234 5.677641e-02
235 2.420500e-02
236 9.213369e-02
237 4.024043e-02
238 6.987694e-04
239 8.612055e-02
240 5.663353e-02
241 4.871693e-04
242 4.533811e-02
243 3.593244e-02
244 1.982537e-02
245 5.490786e-02
246 5.603109e-02
247 1.671653e-02
248 6.522711e-02
249 3.341356e-02
250 2.378629e-06
251 4.299939e-02
252 1.223163e-02
253 8.392798e-02
254 4.272826e-02
255 3.183946e-02
256 4.431299e-02
257 2.661024e-02
258 1.686707e-02
259 4.070924e-03
260 3.325947e-02
261 2.023611e-03
262 2.402284e-02
263 8.369778e-02
264 1.375093e-02
265 8.899898e-03
266 2.148740e-02
267 1.301483e-02
268 8.355791e-03
269 2.549934e-01
270 2.792516e-02
271 4.652563e-03
272 1.556313e-02
273 1.936942e-02
274 3.547794e-03
275 3.412516e-02
276 3.932606e-02
277 5.305868e-02
278 2.354438e-02
279 5.379380e-03
280 1.904203e-02
281 2.045495e-02
282 3.275855e-02
283 3.007389e-02
284 8.227664e-02
285 2.479949e-02
286 6.573835e-02
287 5.165842e-03
288 7.599650e-03
289 9.613557e-02
290 6.690175e-03
291 1.779880e-01
292 5.076263e-02
293 3.117607e-02
294 7.495692e-02
295 3.707768e-02
296 7.086975e-04
297 8.935981e-02
298 5.624249e-02
299 7.105331e-04
300 3.339868e-02
301 3.354603e-02
302 2.041988e-02
303 3.862522e-02
304 5.977081e-02
305 1.730081e-02
306 6.909621e-02
307 3.729478e-02
308 3.940647e-07
309 4.385336e-02
310 1.391891e-02
311 8.898305e-02
312 3.840141e-02
313 3.214408e-02
314 4.284080e-02
315 1.841022e-02
316 1.528207e-02
317 3.106559e-03
318 3.945481e-02
319 2.085094e-03
320 2.464190e-02
321 7.844914e-02
322 1.526590e-02
323 9.922147e-03
324 1.649218e-02
325 1.341602e-02
326 8.124446e-03
327 2.867380e-01
328 2.663867e-02
329 5.342012e-03
330 1.752612e-02
331 2.010863e-02
332 3.581845e-03
333 3.652284e-02
334 4.484362e-02
335 4.600939e-02
336 2.213280e-02
337 5.494917e-03
338 2.016594e-02
339 2.118010e-02
340 2.964000e-02
341 3.405549e-02
342 1.014185e-01
343 2.451624e-02
344 7.966998e-02
345 5.301538e-03
346 8.198895e-03
347 8.789368e-02
348 7.222417e-03
349 1.448276e-01
350 5.676056e-02
351 2.987054e-02
352 6.851434e-02
353 4.193034e-02
354 7.025054e-03
355 8.557358e-02
356 5.812736e-02
357 2.263676e-02
358 2.922588e-02
359 3.363161e-02
360 1.495056e-02
361 5.871619e-02
362 6.235094e-02
363 1.691340e-02
364 5.361939e-02
365 3.722318e-02
366 9.828477e-03
367 4.155345e-02
368 1.327760e-02
369 7.205372e-02
370 4.151130e-02
371 3.265365e-02
372 2.879418e-02
373 2.314340e-02
374 1.653692e-02
375 1.077611e-02
376 3.481427e-02
377 1.815487e-03
378 2.232305e-02
379 1.005192e-01
380 1.491262e-02
381 3.752658e-02
382 1.271613e-02
383 1.223707e-02
384 8.088923e-03
385 2.572550e-01
386 2.300194e-02
387 2.847960e-02
388 1.782098e-02
389 1.900759e-02
390 3.647629e-03
391 3.723368e-02
392 4.079514e-02
393 5.510332e-02
394 3.072313e-02
395 4.183566e-03
396 1.891549e-02
397 1.870293e-02
398 3.182769e-02
399 4.167840e-02
400 1.343152e-01
401 2.451973e-02
402 7.567017e-02
403 4.837843e-03
404 6.477297e-03
405 7.664675e-02
Name: value, dtype: float64
This is the code I used for transforming dataset:
from scipy import stats
x,_ = stats.boxcox(df)
I get this error:
if any(x <= 0):
-> 1031 raise ValueError("Data must be positive.")
1032
1033 if lmbda is not None: # single transformation
ValueError: Data must be positive
Is it because my values are too small that it's producing an error? Not sure what I'm doing wrong. New to using boxcox, could be using it incorrectly in this example. Open to suggestions and alternatives. Thanks!
Your data contains the value 0 (at index 134). When boxcox
says the data must be positive, it means strictly positive.
What is the meaning of your data? Does 0 make sense? Is that 0 actually a very small number that was rounded down to 0?
You could simply discard that 0. Alternatively, you could do something like the following. (This amounts to temporarily discarding the 0, and then using -1/λ for the transformed value of 0, where λ is the Box-Cox transformation parameter.)
First, create some data that contains one 0 (all other values are positive):
In [13]: np.random.seed(8675309)
In [14]: data = np.random.gamma(1, 1, size=405)
In [15]: data[100] = 0
(In your code, you would replace that with, say, data = df.values
.)
Copy the strictly positive data to posdata
:
In [16]: posdata = data[data > 0]
Find the optimal Box-Cox transformation, and verify that λ is positive. This work-around doesn't work if λ ≤ 0.
In [17]: bcdata, lam = boxcox(posdata)
In [18]: lam
Out[18]: 0.244049919975582
Make a new array to hold that result, along with the limiting value of the transform of 0 (which is -1/λ):
In [19]: x = np.empty_like(data)
In [20]: x[data > 0] = bcdata
In [21]: x[data == 0] = -1/lam
The following plot shows the histograms of data
and x
.