Search code examples
algorithmfunctioncomplexity-theoryfactorial

Complexity of f(k) when f(n) = O(n!) and k=n*(n-1)


I have the following problem. Let's suppose we have function f(n). Complexity of f(n) is O(n!). However, there is also parameter k=n*(n-1). My question is - what is the complexity of f(k)? Is it f(k)=O(k!/k^2) or something like that, taking into consideration that there is a quadratic relation between k and n?


Solution

  • Computational complexity is interpreted base on the size of the input. Hence, if f(n) = O(n!) when your input is n, then f(k) = O(k!) when your input is k.

    Therefore, you don't need to compute the complexity for each value of input for the function f(n). For example, f(2) = O(2!), you don't need to compute the complexity of f(10) likes O((5*2)!) as 10 = 5 * 2, and try to simplify it base on the value of 2!. We can say f(10) = O(10!).

    Anyhow, if you want compute (n*(n-1))! = (n^2 - n)!(n^2 - n + 1)...(n^2 - n + n) /(n^2 - n + 1)...(n^2 - n + n) = (n^2)!/\theta(n^3) = O((n^2)!/n^(2.9))