I have been dealing with random forest and naive bayes lately. Now i want to use a Support vector machine.
After fitting the model i wanted to use the output columns "probability" and "label" to compute the AUC value. But now I have seen that there is no column "probability" for SVM?!
Here you can see how I have done so far:
from pyspark.ml.classification import LinearSVC
svm = LinearSVC(maxIter=5, regParam=0.01)
model = svm.fit(train)
scores = model.transform(train)
results = scores.select('probability', 'label')
# Create Score-Label Set for 'BinaryClassificationMetrics'
results_collect = results.collect()
results_list = [(float(i[0][0]), 1.0-float(i[1])) for i in results_collect]
scoreAndLabels = sc.parallelize(results_list)
metrics = BinaryClassificationMetrics(scoreAndLabels)
print("AUC-value: " + str(round(metrics.areaUnderROC,4)))
That was my approach how I have done this in the past for random forest and naive bayes. I thought I could do it with svm too... But that does not work because there is no output column "probability".
Does anyone know why the column "probability" does not exist? And how i can compute the AUC-value now?
Using the most recent spark/pyspark
to the time of this answer:
If you use the pyspark.ml
module (unlike mllib
), you can work with Dataframe as the interface:
svm = LinearSVC(maxIter=5, regParam=0.01)
model = svm.fit(train)
test_prediction = model.transform(test)
Create the evaluator (see it's source code for settings):
from pyspark.ml.evaluation import BinaryClassificationEvaluator
evaluator = BinaryClassificationEvaluator()
Apply evaluator to data (again, source code shows more options):
evaluation = evaluator.evaluate(test_prediction)
The result of evaluate
is, by default, the "Area Under Curve":
print("evaluation (area under ROC): %f" % evaluation)