I'm using the code from https://python-graph-gallery.com/391-radar-chart-with-several-individuals/ and after I change some label of it, it is not working anymore. I have a dataframe:
df = pd.DataFrame({
'group': ['A', 'B', 'C', 'D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24],
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
values = df.loc[0].drop('group').values.flatten().tolist()
values += values[:1]
values = df.loc[1].drop('group').values.flatten().tolist()
values += values[:1]
values = df.loc[2].drop('group').values.flatten().tolist()
values += values[:1]
It is just the same code from the website, and the radar graph is dropping group
correctly.
But, if I change var1
to a
or anything else, it will not drop group
correctly.
I have tried all the way that I can try but it still didn't solve the issue. Whenever the name of var2
changed, it is not dropping group
. Please help me to solve it or tell me where is wrong, thanks!
Full Code:
# Libraries
import matplotlib.pyplot as plt
import pandas as pd
from math import pi
# Set data
df = pd.DataFrame({
'group': ['A', 'B', 'C', 'D'],
'var1': [38, 1.5, 30, 4],
'var2': [29, 10, 9, 34],
'var3': [8, 39, 23, 24], # if you change var3 to asdfs(some random thing), the issue will exist
'var4': [7, 31, 33, 14],
'var5': [28, 15, 32, 14]
})
categories = list(df)[1:]
N = len(categories)
angles = [n / float(N) * 2 * pi for n in range(N)]
angles += angles[:1]
ax = plt.subplot(111, polar=True)
ax.set_theta_offset(pi / 2)
ax.set_theta_direction(-1)
plt.xticks(angles[:-1], categories)
# Draw ylabels
ax.set_rlabel_position(0)
plt.yticks([10, 20, 30], ["10", "20", "30"], color="grey", size=7)
plt.ylim(0, 40)
values = df.loc[0].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="group A")
ax.fill(angles, values, 'b', alpha=0.1)
values = df.loc[1].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="group B")
ax.fill(angles, values, 'r', alpha=0.1)
values = df.loc[1].drop('group').values.flatten().tolist()
values += values[:1]
ax.plot(angles, values, linewidth=1, linestyle='solid', label="group C")
ax.fill(angles, values, 'r', alpha=0.1)
plt.legend(loc='upper right', bbox_to_anchor=(0.1, 0.1))
plt.show()
The issue is that while you drop the correct values, you do not always drop the correct names. The problem is in the first few lines:
df = pd.DataFrame({
'group': ['A', 'B', 'C', 'D'],
'var1': [38, 1.5, 30, 4],
# ...
})
categories = list(df)[1:]
You construct the DataFrame from a dict. And dicts do not retain the order you write them in, as you have assumed. So list(df)[1:]
may contain any arbitrary ordering of the column names from df
, with one (arbitrary) name removed.
An easy fix is:
categories = df.columns.drop('group').tolist()
But note this may still leave you with a plot whose categories move around seemingly at random. To control the order, here is one solution:
df = pd.DataFrame.from_items([
('group', ['A', 'B', 'C', 'D']),
('var1', [38, 1.5, 30, 4]),
# ...
])
By using a list instead of a dict, the ordering will be preserved, and list(df)[1:]
will always exclude group
.