Please explain.
import statistics
x = [0,1]
statistics.mean(x)
## 0.5
But:
import numpy
import statistics
x = numpy.array([0,1])
statistics.mean(x)
## 0
I'm pretty sure it's a basic, well-known, over-discussed issue: please link to a duplicate, as I couldn't find one.
The reason is there is a conversion method in the statistics
module which checks if a data type is a subclass of int
. This works for int
, but not for np.int32
.
import statistics
from fractions import Fraction
a = statistics._convert(Fraction('1/2'), int) # 0.5
b = statistics._convert(Fraction('1/2'), np.int32) # 0
def _convert(value, T):
"""Convert value to given numeric type T."""
if type(value) is T:
return value
#### THIS BIT WORKS FOR int BUT not for np.int32 ###
if issubclass(T, int) and value.denominator != 1:
T = float
try:
return T(value)
except TypeError:
if issubclass(T, Decimal):
return T(value.numerator)/T(value.denominator)
else:
raise
Therefore, you can either use statistics
with a list, or numpy
with an array:
statistics.mean([0, 1])
; ornp.mean(np.array([0, 1]))
, or np.array([0, 1]).mean()
.