Search code examples
pythonpandasnumpydivide-by-zeroweighted-average

Pandas/numpy weighted average ZeroDivisionError


Creating a lambda function to calculate weighted average and sending that to a dictionary.

wm = lambda x: np.average(x, weights=df.loc[x.index, 'WEIGHTS'])

# Define a dictionary with the functions to apply for a given column:
f = {'DRESS_AMT': 'max', 
     'FACE_AMT': 'sum',
     'Other_AMT': {'weighted_mean' : wm}}

# Groupby and aggregate with dictionary:
df2=df.groupby(['ID','COL1'], as_index=False).agg(f)

This code works but the weighted average lambda function fails if the weights add up to 0 ZeroDivisionError. In these case(s) I want the output 'Other_AMT' to just be 0.

I read a document on using np.ma.average (masked average) but could not understand how to implement it


Solution

  • Shouldn't this be enough?

    def wm(x):
        try: 
            return np.average(x, weights=df.loc[x.index, 'WEIGHTS'])
        except ZeroDivisionError:
            return 0
    
    f = {'DRESS_AMT': 'max', 
         'FACE_AMT': 'sum',
         'Other_AMT': {'weighted_mean' : wm} }
    
    df2=df.groupby(['ID','COL1'], as_index=False).agg(f)