I want to double integrate 2D acceleration data in object coordinates to get 2D position in world coordinates. The object always points in the direction of velocity (assume e.g. a train).
So I tried to numerically integrate the acceleration values with velocity verlet integration, changing the direction at each step to the previous velocity in world coordinates, provided by the velocity verlet algorithm:
import numpy as np
from math import sqrt
from matplotlib import pyplot as plt
def rotate(a, newXAxis):
r = newXAxis
normX = r / sqrt(np.dot(r.T,r))
normY = [-normX[1], normX[0]]
b = np.dot(np.array([normX, normY]).T, a)
return(b)
"""return true if v > 1 km/h or any speed given"""
def isMoving(deltaXPosition, deltaYPosition, deltaTime, fasterThankmh=1.0):
x = deltaXPosition
y = deltaYPosition
t = deltaTime
if t*t == 0.:
return False
if hasattr(x, "__len__"):
x = x[0]
if hasattr(y, "__len__"):
y = y[0]
if hasattr(t, "__len__"):
t = t[0]
speed = float(fasterThankmh)
return((x*x + y*y) / (t*t) > 0.077160*speed*speed)
def velocity_verlet_integration(Xacc, Yacc,
x0=0., y0=0.,
vx_0=0, vy_0=0,
forward=np.array([1.0, 0.0])):
vx = np.zeros(len(Xacc))
vy = np.zeros(len(Xacc))
x = np.zeros(len(Xacc))
y = np.zeros(len(Xacc))
x[0] = x0
y[0] = y0
vx[0] = vx_0
vy[0] = vy_0
for i in range(len(Xacc)-1):
dt = Xacc[i+1]-Xacc[i]
a = rotate(Yacc[i,:], forward)
x[i+1] = x[i] + vx[i]*dt + 1.0/2.0*a[0]*dt*dt
y[i+1] = y[i] + vy[i]*dt + 1.0/2.0*a[1]*dt*dt
if isMoving(x[i+1]-x[i], y[i+1]-y[i], dt):
forward = np.array([x[i+1]-x[i], y[i+1]-y[i]])
aNext = rotate(Yacc[i+1,:], forward)
vx[i+1] = vx[i] + dt*(a[0] + aNext[0])/2
vy[i+1] = vy[i] + dt*(a[1] + aNext[1])/2
return x, y
Testing this with a simple circular motion with:
"""test circle"""
centripetal=-0.2
N = 0.01
xCircle = np.array(range(int(100*10**N)))/float(10**N)
yCircle = np.array([[0.0, centripetal] for i in xCircle])
xvvi, yvvi = velocity_verlet_integration(xCircle, yCircle, 0., 0., 1., 0.)
#plot it
plt.plot(xvvi, yvvi, ".-", label='position with "velocity verlet" integration')
This results in a drift outwards, because the current direction is based on the last velocity, which is obviously a bad approximation.
Can anyone point me to a better solution?
Based on my thoughts (at the end of my question) I added an uggly solution, so I am not going to accept it as an answer.
def my_integration(t, a_object,
x0=0., y0=0.,
vx_0=0, vy_0=0,
forward=np.array([1.0, 0.0])):
v = np.zeros((len(t), 2))
p = np.zeros((len(t), 2))
p[0,:] = np.array([x0, y0])
v[0,:] = np.array([vx_0, vy_0])
v[1,:] = np.array([vx_0, vy_0])
for i in range(len(t)-1):
"""this feels like a hack"""
for j in range(10):
dt = t[i+1]-t[i]
a = rotate(a_object[i,:], v[i,:]+v[i+1,:])
p[i+1,:] = p[i,:] + v[i,:]*dt + 1.0/2.0*a*dt*dt
aNext = rotate(a_object[i+1,:], v[i,:]+v[i+1,:])
v[i+1,:] = v[i,:] + dt*(a + aNext)/2.
if i < len(t)-2:
v[i+2,:] = v[i+1,:]
return p
And for the plot, adding this:
plt.plot(np.cos(pi*2*np.array(range(21))/20)/centripetal,
(np.sin(pi*2*np.array(range(21))/20)+1)/centripetal,
"x", label='ground truth')
myi = my_integration(t, a, 0., 0., 1., 0.)
plt.plot(myi[:,0], myi[:,1], "--", label='position with my integration')
plt.legend(fontsize = 'x-small')