I have a dataframe like so:
testdf
category item inventory sold
0 A Low 100 50
1 A High 200 75
2 A Med 130 20
3 A Misc 435 150
4 A High 130 65
5 A Misc 120 88
6 B Misc 321 230
7 B High 453 450
8 B Low 321 301
9 B Low 122 80
I am grouping it based on category and item
dfindx = testdf.groupby(['category','item']).agg({'inventory':['count','sum']})
dfindx
inventory
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
Now on aggregating the indexed table I am facing this error:
dfindx.groupby(['category'])[['count']].sum()
KeyError: "Columns not found: 'count'"
dfindx.columns
MultiIndex(levels=[['inventory'], ['count', 'sum']],
labels=[[0, 0], [0, 1]])
I an unable to make the reference to counts and sums correctly to summarize a grouped table.
dfindx.groupby(['category'])[inventory['count']].sum()
NameError: name 'inventory' is not defined
dfindx.groupby(['category'])[['inventory']['count']].sum()
TypeError: list indices must be integers or slices, not str
I think you can simplify first aggregation by aggregate by list
with column inventory
:
dfindx = testdf.groupby(['category','item'])['inventory'].agg(['count','sum'])
print (dfindx)
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
and then next aggregation working nice:
print(dfindx.groupby(['category'])[['count']].sum())
count
category
A 6
B 4
Buth if want use your code with MultiIndex
output use tuple for select in next aggregation:
dfindx = testdf.groupby(['category','item']).agg({'inventory':['count','sum']})
print (dfindx)
inventory
count sum
category item
A High 2 330
Low 1 100
Med 1 130
Misc 2 555
B High 1 453
Low 2 443
Misc 1 321
print(dfindx.groupby(['category'])[[('inventory','count')]].sum())
inventory
count
category
A 6
B 4