I have the following data set:
set.seed(10)
start_date <- as.Date('2000-01-01')
end_date <- as.Date('2000-01-10')
Data <- data.frame(
id = rep((1:1000),10),
group = rep(c("A","B"), 25),
x = sample(1:100),
y = sample(c("1", "0"), 10, replace = TRUE),
date = as.Date(
sample(as.numeric(start_date):
as.numeric(end_date), 1000,
replace = T), origin = '2000-01-01'))
With that, I create the following plot:
Data %>% mutate(treated = factor(group)) %>%
mutate(date = as.POSIXct(date)) %>% #convert date to date
group_by(treated, date) %>% #group
summarise(prop = sum(y=="1")/n()) %>% #calculate proportion
ggplot()+ theme_classic() +
geom_line(aes(x = date, y = prop, color = treated)) +
geom_point(aes(x = date, y = prop, color = treated)) +
geom_vline(xintercept = as.POSIXct("2000-01-05 12:00 GMT"), color = 'black', lwd = 1)
Unfortunately the plot is pretty 'jumpy' and I would like to smooth it. I tried geom_smooth()
but can't get it to work. Other questions regarding smoothing didn't help me because they missed the grouping aspect and therefore had a different structure. However, the example data set is in reality part of a larger data set so I need to stick to that code.
[Edit: the geom_smooth()
code I tried is geom_smooth(method = 'auto', formula = y ~ x)
]
Can someone point me into the right direction? Many thanks and all the best.
Is this what you want by a smoothed line? You call geom_smooth
with aesthetics, not in combination with geom_line
. You can choose different smoothing methods, though the default loess
with low observations is usually what people want. As an aside, I don't think this is necessarily nicer to look at than the geom_line
version, and in fact is slightly less readable. geom_smooth
is best used when there are many y
observations for every x
which makes patterns hard to see, geom_line
is good for 1-1.
EDIT: After looking at what you're doing more closely, I added a second plot that doesn't directly calculate the treatment-date means and just uses geom_smooth
directly. That lets you get a more reasonable confidence interval instead of having to remove it as before.
set.seed(10)
start_date <- as.Date('2000-01-01')
end_date <- as.Date('2000-01-10')
Data <- data.frame(
id = rep((1:1000),10),
group = rep(c("A","B"), 25),
x = sample(1:100),
y = sample(c("1", "0"), 10, replace = TRUE),
date = as.Date(
sample(as.numeric(start_date):
as.numeric(end_date), 1000,
replace = T), origin = '2000-01-01'))
library(tidyverse)
Data %>%
mutate(treated = factor(group)) %>%
mutate(date = as.POSIXct(date)) %>% #convert date to date
group_by(treated, date) %>% #group
summarise(prop = sum(y=="1")/n()) %>% #calculate proportion
ggplot() +
theme_classic() +
geom_smooth(aes(x = date, y = prop, color = treated), se = F) +
geom_point(aes(x = date, y = prop, color = treated)) +
geom_vline(xintercept = as.POSIXct("2000-01-05 12:00 GMT"), color = 'black', lwd = 1)
#> `geom_smooth()` using method = 'loess' and formula 'y ~ x'
Data %>%
mutate(treated = factor(group)) %>%
mutate(y = ifelse(y == "0", 0, 1)) %>%
mutate(date = as.POSIXct(date)) %>% #convert date to date
ggplot() +
theme_classic() +
geom_smooth(aes(x = date, y = y, color = treated), method = "loess") +
geom_vline(xintercept = as.POSIXct("2000-01-05 12:00 GMT"), color = 'black', lwd = 1)
Created on 2018-03-27 by the reprex package (v0.2.0).