All,
I have a dataframe with Dates on the first column and categories across as such:
Accounts <- c('A','B','C','D',
'A','B','C','D',
'A','B','C','D')
Dates <- as.Date(c('2016-01-31', '2016-01-31','2016-01-31','2016-01-31',
'2016-02-28','2016-02-28','2016-02-28','2016-02-28',
'2016-03-31','2016-03-31','2016-03-31','2016-03-31'))
Balances <- c(100,NA,NA,NA,
90,50,10,NA,
80,40,5,120)
Origination <- data.frame(Dates,Accounts,Balances)
library(reshape2)
Origination <- dcast(Origination,Dates ~ Accounts, value.var = "Balances")
Dates A B C D
1 2016-01-31 100 NA NA NA
2 2016-02-28 90 50 10 NA
3 2016-03-31 80 40 5 120
The goal is to sum rows where the prior values is NA. I tried to used lag or shift but don't have the knowledge to pull it off.
So for this dataframe I would like a Totals column at the end it values 60 (50 + 10) and 120 for February and March.
Is this doable?
Regards, Aksel
Shift the selection down a row, filter out all the non-NA's as 0, and then use rowSums
:
sel <- rbind(FALSE, !is.na(head(Origination[-1], -1)))
#sel
# A B C D
#[1,] FALSE FALSE FALSE FALSE
#[2,] TRUE FALSE FALSE FALSE
#[3,] TRUE TRUE TRUE FALSE
rowSums(replace(Origination[-1], sel, 0), na.rm=TRUE)
#[1] 100 60 120
If you want the first row to be totally excluded, rather than totally included, just change the FALSE
to TRUE
:
sel <- rbind(TRUE, !is.na(head(Origination[-1], -1)))
rowSums(replace(Origination[-1], sel, 0), na.rm=TRUE)
#[1] 0 60 120