In my classification model, I need to maintain uppercase letters, but when I use sklearn countVectorizer to built the vocabulary, uppercase letters convert to lowercase!
To exclude implicit tokinization, I built a tokenizer which just pass the text without any operation ..
my code:
co = dict()
def tokenizeManu(txt):
return txt.split()
def corpDict(x):
print('1: ', x)
count = CountVectorizer(ngram_range=(1, 1), tokenizer=tokenizeManu)
countFit = count.fit_transform(x)
vocab = count.get_feature_names()
dist = np.sum(countFit.toarray(), axis=0)
for tag, count in zip(vocab, dist):
co[str(tag)] = count
x = ['I\'m John Dev', 'We are the only']
corpDict(x)
print(co)
the output:
1: ["I'm John Dev", 'We are the only'] #<- before building the vocab.
{'john': 1, 'the': 1, 'we': 1, 'only': 1, 'dev': 1, "i'm": 1, 'are': 1} #<- after
As explained in the documentation, here. CountVectorizer
has a parameter lowercase
that defaults to True
. In order to disable this behavior, you need to set lowercase=False
as follows:
count = CountVectorizer(ngram_range=(1, 1), tokenizer=tokenizeManu, lowercase=False)