I'm trying to create a simple one-layer/one-unit nn with tensorflow custom estimators that will be able to compute logical AND operation, but I've got a trouble with sigmoid activation -- I want to set threshold
here is my code
x = np.array([
[0, 0],
[1, 0],
[0, 1],
[1, 1]
], dtype=np.float32)
y = np.array([
[0],
[0],
[0],
[1]
])
def sigmoid(val):
res = tf.nn.sigmoid(val)
isGreater = tf.greater(res, tf.constant(0.5))
return tf.cast(isGreater, dtype=tf.float32)
def model_fn(features, labels, mode, params):
predictions = tf.layers.dense(inputs=features, units=1, activation=sigmoid)
if mode == tf.estimator.ModeKeys.PREDICT:
return tf.estimator.EstimatorSpec(mode=mode, predictions=predictions)
loss = tf.losses.sigmoid_cross_entropy(labels, predictions)
optimizer = tf.train.GradientDescentOptimizer(0.5)
train_op = optimizer.minimize(loss, global_step=tf.train.get_global_step())
return tf.estimator.EstimatorSpec(mode=mode, loss=loss, train_op=train_op)
nn = tf.estimator.Estimator(model_fn=model_fn)
input_fn = tf.estimator.inputs.numpy_input_fn(x=x, y=y, shuffle=False, num_epochs=None)
nn.train(input_fn=input_fn, steps=500)
BUT this throws an error
ValueError: No gradients provided for any variable, check your graph for ops that do not support gradients, between variables ["<tf.Variable 'dense/kernel:0' shape=(2, 1) dtype=float32_ref>", "<tf.Variable 'dense/bias:0' shape=(1,) dtype=float32_ref>"] and loss Tensor("sigmoid_cross_entropy_loss/value:0", shape=(), dtype=float32).
How can I fix this? Please help..
Another question I've got - why Tensorflow does not have inbuilt threshold for sigmoid activation? Isn't it one of the most needed things for binary classification (with sigmoid/tanh)?
There is a built-in sigmoid activation, which is tf.nn.sigmoid
.
However when you create a network you should never use an activation on the last layer. You need to provide unscaled logits to the layer, like this:
predictions = tf.layers.dense(inputs=features, units=1, activation=None)
loss = tf.losses.sigmoid_cross_entropy(labels, predictions)
Otherwise, with your custom sigmoid your predictions will be either 0
or 1
and there is no gradient available for this.