I need following workflow for my celery tasks.
when taskA finishes with success I want to execute taskB.
I know there is signal @task_success
but this returns only task's result, and I need access to parameters of previous task's arguments. So I decided for code like these:
@app.task
def taskA(arg):
# not cool, but... https://github.com/celery/celery/issues/3797
from shopify.tasks import taskA
taskA(arg)
@task_postrun.connect
def fetch_taskA_success_handler(sender=None, **kwargs):
from gcp.tasks import taskB
if kwargs.get('state') == 'SUCCESS':
taskB.apply_async((kwargs.get('args')[0], ))
The problem is the taskB
seems to be executed in some endless loop many, many times instead only once.
This way it works correctly:
@app.task
def taskA(arg):
# not cool, but... https://github.com/celery/celery/issues/3797
# otherwise it won't added in periodic tasks
from shopify.tasks import taskA
return taskA(arg)
@task_postrun.connect
def taskA_success_handler(sender=None, state=None, **kwargs):
resource_name = kwargs.get('kwargs', {}).get('resource_name')
if resource_name and state == 'SUCCESS':
if sender.name == 'shopify.tasks.taskA':
from gcp.tasks import taskB
taskB.apply_async(kwargs={
'resource_name': resource_name
})
just for reference:
celery==4.1.0
Django==2.0
django-celery-beat==1.1.0
django-celery-results==1.0.1
flower==0.9.2
amqp==2.2.2
Python 3.6