Search code examples
pythonpysparkk-means

Create column with distance to center


I am running a Kmeans algorithm with pyspark. The input is a Vector of length 20 (output of a word2vec on text verbatims). I then transform my input dataframe to get the predicted center associated to each verbatim.

from pyspark.ml.clustering import KMeans

n_centres = 14
kmeans = KMeans().setK(n_centres).setSeed(1)
model = kmeans.fit(df)
df_pred = model.transform(df)

I have the following results :

df_pred.show()

+--------------------+----------+
|            features|prediction|
+--------------------+----------+
|[-0.1879145856946...|        13|
|[-0.4428333640098...|         6|
|[0.00466226078569...|         9|
|[0.09467326601346...|        12|
|[-0.0388545106080...|         5|
|[-0.1805213503539...|        13|
|[0.08455141757925...|         3|
+--------------------+----------+

I would like to add a column to my dataframe containing the distance between the features array and the center to which it is associated. I know I can get the coordinates of the center, I know how to compute the distance between a vector and the center :

model.clusterCenters()[3] # to get the coordinates of cluster number 3
v1.squared_distance(center_vect) # euclidean distance between v1 and the center center_vect

But I can't figure out how to add the result of this computation as a column. A udf or a map seems to be a solution but I keep getting errors like : PicklingError: Could not serialize object....


Solution

  • You're correct to assume you need to use a UDF. Here's an example of how this will work in a similar context:

    >>> import random
    >>> from pyspark.sql.functions import udf
    >>> centers = {1: 2, 2: 3, 3: 4, 4:5, 5:6}
    >>> choices = [1, 2, 3, 4,5]
    >>> l = [(random.random(), random.choice(choices)) for i in range(10)]
    >>> df = spark.createDataFrame(df, ['features', 'prediction'])
    >>> df.show()
    +-------------------+----------+
    |           features|prediction|
    +-------------------+----------+
    | 0.4836744206538728|         3|
    |0.38698675915124414|         4|
    |0.18612684714681604|         3|
    | 0.5056159922655895|         1|
    | 0.7825023909896331|         4|
    |0.49933715239708243|         5|
    | 0.6673811293962939|         4|
    | 0.7010166164833609|         3|
    | 0.6867109795526414|         5|
    |0.21975859257732422|         3|
    +-------------------+----------+
    >>> dist = udf(lambda features, prediction: features - centers[prediction])
    >>> df.withColumn('dist', dist(df.features, df.prediction)).show()
    +-------------------+----------+-------------------+
    |           features|prediction|               dist|
    +-------------------+----------+-------------------+
    | 0.4836744206538728|         3| -3.516325579346127|
    |0.38698675915124414|         4| -4.613013240848756|
    |0.18612684714681604|         3| -3.813873152853184|
    | 0.5056159922655895|         1|-1.4943840077344106|
    | 0.7825023909896331|         4| -4.217497609010367|
    |0.49933715239708243|         5| -5.500662847602918|
    | 0.6673811293962939|         4|-4.3326188706037065|
    | 0.7010166164833609|         3| -3.298983383516639|
    | 0.6867109795526414|         5| -5.313289020447359|
    |0.21975859257732422|         3| -3.780241407422676|
    +-------------------+----------+-------------------+
    

    You can alter the line where I create the UDF to something like the following:

    dist = udf(lambda features, prediction: features.squared_distance(model.clusterCenters()[prediction]))
    

    Since I don't have the actual data to work with I'm hoping that's correct!