I have a DataFrame like this
dict_ = {'Date':['2018-01-01','2018-01-02','2018-01-03','2018-01-04','2018-01-05'],'Col1':[1,2,3,4,5],'Col2':[1.1,1.2,1.3,1.4,1.5],'Col3':[0.33,0.98,1.54,0.01,0.99]}
df = pd.DataFrame(dict_, columns=dict_.keys())
I then calculate the pearson correlation between the columns and filter out columns that are correlated above my threshold of 0.95
def trimm_correlated(df_in, threshold):
df_corr = df_in.corr(method='pearson', min_periods=1)
df_not_correlated = ~(df_corr.mask(np.eye(len(df_corr), dtype=bool)).abs() > threshold).any()
un_corr_idx = df_not_correlated.loc[df_not_correlated[df_not_correlated.index] == True].index
df_out = df_in[un_corr_idx]
return df_out
which yields
uncorrelated_factors = trimm_correlated(df, 0.95)
print uncorrelated_factors
Col3
0 0.33
1 0.98
2 1.54
3 0.01
4 0.99
So far I am happy with the result, but I would like to keep one column from each correlated pair, so in the above example I would like to include Col1 or Col2. To get s.th. like this
Col1 Col3
0 1 0.33
1 2 0.98
2 3 1.54
3 4 0.01
4 5 0.99
Also on a side note, is there any further evaluation I can do to determine which of the correlated columns to keep?
thanks
You can use np.tril()
instead of np.eye()
for the mask:
def trimm_correlated(df_in, threshold):
df_corr = df_in.corr(method='pearson', min_periods=1)
df_not_correlated = ~(df_corr.mask(np.tril(np.ones([len(df_corr)]*2, dtype=bool))).abs() > threshold).any()
un_corr_idx = df_not_correlated.loc[df_not_correlated[df_not_correlated.index] == True].index
df_out = df_in[un_corr_idx]
return df_out
Output:
Col1 Col3
0 1 0.33
1 2 0.98
2 3 1.54
3 4 0.01
4 5 0.99