I have the following dataframe:
df = pd.DataFrame({('psl', 't1'): {'fiat': 36.389809173765507,
'mazda': 18.139242981049016,
'opel': 0.97626485600703961,
'toyota': 74.464422292108878},
('psl', 't2'): {'fiat': 35.423004380643462,
'mazda': 24.269803148695079,
'opel': 1.0170540474994665,
'toyota': 60.389948228586832},
('psv', 't1'): {'fiat': 35.836800462163097,
'mazda': 15.893295606055901,
'opel': 0.78744853046848606,
'toyota': 74.054850828062271},
('psv', 't2'): {'fiat': 34.379812557124815,
'mazda': 23.202587247335682,
'opel': 0.80191294532382451,
'toyota': 58.735083244244322}})
I wish to reduce it from a multiindex to a normal index. I wish to do this by applying a function using t1 and t2 values and returning only a single value which will result in there being two columns: psl and psv.
I have succeeded in grouping it as such and applying a function:
df.groupby(level=0, axis=1).agg(np.mean)
which is very close to what I want except that I don't want to apply np.mean, but rather a custom function. In particular, a percent change function.
My end goal is to be able to do something like this:
df.groupby(level=0, axis=1).apply(lambda t1, t2: (t2-t1)/t1)
Which returns this error:
TypeError: <lambda>() missing 1 required positional argument: 't2'
I have also tried this:
df.apply(lambda x: x[x.name].apply(lambda x: x['t1']/x['t2']))
which in turn returns:
KeyError: (('psl', 't1'), 'occurred at index (psl, t1)')
Could you please include a thorough explanation of each part of your answer to the best of your abilities so I can better understand how pandas works.
Not easy. Use custom function with squeeze
for Series
and xs
for select MultiIndex
in columns:
def f(x):
t2 = x.xs('t2', axis=1, level=1)
t1 = x.xs('t1', axis=1, level=1)
a = (t2-t1)/t1
#print (a)
return (a.squeeze())
df1 = df.groupby(level=0, axis=1).agg(f)
print (df1)
psl psv
fiat -0.026568 -0.040656
mazda 0.337972 0.459898
opel 0.041781 0.018369
toyota -0.189009 -0.206871
Use lambda function is possible, but really awfull with repeating code:
df1 = df.groupby(level=0, axis=1)
.agg(lambda x: ((x.xs('t2', axis=1, level=1)-x.xs('t1', axis=1, level=1))/
x.xs('t1', axis=1, level=1)).squeeze())