The solution to Laplace PDE on rectangle is usually written using hyperbolic trig functions. I solve this PDE using Maple. Verified Maple solution is correct. But having hard time figuring how to make its result match the book result.
I tried sol:=convert(rhs(sol),trigh):
then simplify(sol,trig);
and it become little closer to the book solution, but is still can be more simplified.
Are there any tricks to do this?
Here is MWE
restart;
interface(showassumed=0):
pde:=diff(u(x,y),x$2)+diff(u(x,y),y$2)=0:
bc:=u(0,y)=0,u(a,y)=f(y),u(x,0)=0,u(x,b)=0:
sol:=pdsolve([pde,bc],u(x,y)) assuming(0<=x and x<=a and 0<=y and y<=b):
sol:=subs(infinity=20,sol);
Which gives
The above is same as the following, which I am trying to convert the above to
textbookU:= Sum(2*sin(n*Pi*y/b)*(Int(sin(n*Pi*y/b)*f(y),
y = 0 .. b))*sinh(n*Pi*x/b)/(b*sinh(n*Pi*a/b)), n = 1 .. 20);
The above are the same. I checked few points, and they give same answer. They must be the same, as the above textbook solution is correct, and I am assuming Maple solution is correct.
Now I tried to convert Maple sol to the above as follows
sol:=convert(rhs(sol),trigh):
simplify(sol,trig);
May be someone knows a better way to obtain the textbook solution form, starting from the Maple solution above.
Using Maple 2017.3 on windows
After the convert you can first expand it, to then simplify it again:
s := convert(sol, trigh):
s := expand(s):
simplify(s);
which gives: