I have a pandas dataframe with a column allTexts
which stores a bunch of text information for each row. I am trying to apply a custom function which returns 3 values given the input text. I then want to store these 3 output values in a new dataframe column - ideally as a numpy array for each row. I do it with apply()
, the code completes successfully but it doesn't actually change values.
#stub for creating a dataframe
df = pd.DataFrame({'allText':['Hateful text. This is bad', 'Text about great stuff', ' ']})
#set a placeholder - just 3 zeros for each record
df['Sentiments'] = df['allText'].apply(lambda x: np.zeros(3))
#function definition. It is a textblob library function, which gives me back sentiment scores for each text
def getTextSentiments(text):
blob = TextBlob(text)
pos = 0
neg = 0
neutral = 0
count = 0
for sentence in blob.sentences:
sentiment = sentence.sentiment.polarity
if sentiment > 0.1:
pos +=1
elif sentiment > -0.1:
neutral +=1
else:
neg +=1
count+=1
if count == 0:
count = 1
return numpy.array([pos/count, neutral/count, neg/count])
#apply function only for non-empty texts and override 3 zeros in sentiments column with real 3 values
df[df["allText"]!=" "]['Sentiments'] = df[df["allText"]!=" "]["allText"].apply(getTextSentiments)
After this code completes without any error I still end up with same value of all zeros in my Sentiments column.
MVP to demonstrate it doesn't work even with single record:
df[df["allText"]!=" "].iloc[0]['Sentiments']
array([ 0., 0., 0.])
test = getTextSentiments(df[df["allText"]!=" "].iloc[0]['allText'])
test
Out[64]: (0.4166666666666667, 0.5, 0.08333333333333333)
df[df["allText"]!=" "].iloc[0]['Sentiments'] = test
df[df["allText"]!=" "].iloc[0]['Sentiments']
Out[75]: array([ 0., 0., 0.])
Any advice on what am I doing wrong?
Can you try the following?
df.Sentiments = df.apply(lambda x: x.Sentiments if x.allText ==' ' else getTextSentiments(x.allText), axis=1)
Using a dummy getTextSentiments function for test:
df = pd.DataFrame({'allText':['Hateful text. This is bad', 'Text about great stuff', ' ']})
#set a placeholder - just 3 zeros for each record
df['Sentiments'] = df['allText'].apply(lambda x: np.zeros(3))
def getTextSentiments(text):
return (0.4166666666666667, 0.5, 0.08333333333333333)
df.Sentiments = df.apply(lambda x: x.Sentiments if x.allText ==' ' else getTextSentiments(x.allText), axis=1)
df
Out[181]:
allText Sentiments
Out[181]:
allText Sentiments
0 Hateful text. This is bad (0.4166666666666667, 0.5, 0.08333333333333333)
1 Text about great stuff (0.4166666666666667, 0.5, 0.08333333333333333)
2 [0.0, 0.0, 0.0]