I have a dataframe df1
which has a column named averageDate
that contains dates, in the format of %Y-%m.
I have another dataframe df2
where a majority of the column names are date values in the format of %Y-%m, and the data within these columns are numeric values of an economic indicator.
I want to populate a new column in df1 (shown in df3
), in which the values are the values found in df2, where the averageDate
values in df` matches the column name in df2.
I have successful solved conditional merging based on two columns in separate dataframes for prior problems, but what I am stuck on here is the fact that the second matching criteria is the column names in df2
.
A reproduction of my dataframes is shown below:
df1 <- structure(list(zipcode = structure(c(1L, 2L, 4L, 3L), .Label = c("10019",
"10027", "20009", "94117"), class = "factor"), averageDate = c("2017-08",
"2017-04", NA, "2015-11")), .Names = c("zipcode", "averageDate"
), row.names = c(NA, -4L), class = c("tbl_df", "tbl", "data.frame"
))
df2 <-structure(list(RegionName = c(20009, 10019, 10027), `2015-01` = c(444500,
1855000, NA), `2015-02` = c(439000, 1715000, NA), `2015-03` = c(437000,
1775000, NA), `2015-04` = c(475000, 1855000, NA), `2015-05` = c(489000,
1860000, NA), `2015-06` = c(489750, 1877500, NA), `2015-07` = c(479900,
1957500, NA), `2015-08` = c(489900, 1950000, NA), `2015-09` = c(5e+05,
1947500, NA), `2015-10` = c(512450, 1958000, NA), `2015-11` = c(503999.5,
1990000, NA), `2015-12` = c(499900, 1995000, NA), `2016-01` = c(499500,
1995000, NA), `2016-02` = c(529900, 1822500, NA), `2016-03` = c(5e+05,
1820000, 872000), `2016-04` = c(5e+05, 1930000, 887000), `2016-05` = c(492500,
1795500, 837000), `2016-06` = c(529000, 1750000, 819000), `2016-07` = c(549000,
1832500, 725800), `2016-08` = c(577000, 1850000, 725000), `2016-09` = c(549900,
1762500, 753500), `2016-10` = c(529000, 1777500, 737900), `2016-11` = c(519000,
1787000, 750000), `2016-12` = c(499000, 1795000, 725800), `2017-01` = c(549000,
1795000, 749000), `2017-02` = c(522450, 1833000, 845000), `2017-03` = c(546950,
1836500, 867250), `2017-04` = c(572247.5, 1849450, 929000), `2017-05` = c(549900,
1850000, 929000), `2017-06` = c(540000, 1875000, 899000), `2017-07` = c(519900,
1895000, 899000), `2017-08` = c(525000, 1849990, 897000), `2017-09` = c(572450,
1795000, 840000), `2017-10` = c(595000, 1795000, 882000), `2017-11` = c(555650,
1825000, 949000), `2017-12` = c(525000, 1799950, 795000), `2018-01` = c(557000,
1925000, 772500)), .Names = c("RegionName", "2015-01", "2015-02",
"2015-03", "2015-04", "2015-05", "2015-06", "2015-07", "2015-08",
"2015-09", "2015-10", "2015-11", "2015-12", "2016-01", "2016-02",
"2016-03", "2016-04", "2016-05", "2016-06", "2016-07", "2016-08",
"2016-09", "2016-10", "2016-11", "2016-12", "2017-01", "2017-02",
"2017-03", "2017-04", "2017-05", "2017-06", "2017-07", "2017-08",
"2017-09", "2017-10", "2017-11", "2017-12", "2018-01"), row.names = c(38L,
82L, 226L), class = "data.frame")
df3 <- structure(list(RegionName = c("10019", "10027", "20009", "94117"
), variable = structure(c(32L, 28L, 11L, NA), .Label = c("2015-01",
"2015-02", "2015-03", "2015-04", "2015-05", "2015-06", "2015-07",
"2015-08", "2015-09", "2015-10", "2015-11", "2015-12", "2016-01",
"2016-02", "2016-03", "2016-04", "2016-05", "2016-06", "2016-07",
"2016-08", "2016-09", "2016-10", "2016-11", "2016-12", "2017-01",
"2017-02", "2017-03", "2017-04", "2017-05", "2017-06", "2017-07",
"2017-08", "2017-09", "2017-10", "2017-11", "2017-12", "2018-01"
), class = "factor"), value = c(1849990, 929000, 503999.5, NA
)), .Names = c("RegionName", "variable", "value"), row.names = c(NA,
-4L), class = "data.frame")
Something like this?
require(tidyverse);
left_join(
df1,
df2 %>%
gather(averageDate, Value, 2:ncol(df2)) %>%
rename(zipcode = RegionName) %>%
mutate(zipcode = as.character(zipcode)))
## A tibble: 4 x 3
# zipcode averageDate Value
# <chr> <chr> <dbl>
#1 10019 2017-08 1849990
#2 10027 2017-04 929000
#3 94117 NA NA
#4 20009 2015-11 504000