I implemented fpm algorithm to find the rules from the activity data, I have the output data in the format.
for itemset in find_frequent_itemsets(dataset, 0.1,include_support=True):
print itemset
The following is the output of the above code:
([u'Global Connect Village'], 28)
([u'Terminal 2', u'Global Connect Village'], 1)
([u'VivoCity', u'Global Connect Village'], 1)
([u'Universal Studios Singapore', u'VivoCity', u'Global Connect Village'], 1)
([u'Universal Studios Singapore', u'Global Connect Village'], 2)
([u'Orchard Gateway', u'Global Connect Village'], 2)
([u'Chinatown', u'Global Connect Village'], 2)
([u'Singapore Changi Airport (SIN)', u'Chinatown', u'Global Connect Village'], 2)
([u'Fragrance Hotel', u'Global Connect Village'], 2)
([u'Singapore Changi Airport (SIN)', u'Fragrance Hotel', u'Global Connect Village'], 1)
([u'Singapore', u'Global Connect Village'], 3)
([u'Singapore Changi Airport (SIN)', u'Singapore', u'Global Connect Village'], 1)
([u"McDonald's", u'Global Connect Village'], 4)
([u'Singapore Changi Airport (SIN)', u"McDonald's", u'Global Connect Village'], 1)
I want to extract only those values which are having higher support and contains three or more objects.
MIN_LOCS = 3
itemset = find_frequent_itemsets(dataset, 0.1,include_support=True
itemset = sorted(filter(lambda it: len(it[0]) >= MIN_LOCS, itemset), key=lambda it: it[1])
Then you can pick the top elements you want:
itemset_top_5 = itemset[:5]
If you want to include a minimum support value just adapt the filtering as needed:
itemset = sorted(filter(lambda it: len(it[0]) >= MIN_LOCS and it[1] >= MIN_SUPPORT, itemset),
key=lambda it: it[1])