I'm debugging a dumpfile (memory dump, not a crashdump), which seems to contain two times the amount of expected objects. While investigating the corresponding symbols, I've noticed the following:
0:000> x /2 <product_name>!<company>::<main_product>::<chapter>::<subchapter>::<Current_Object>*
012511cc <product_name>!<company>::<main_product>::<chapter>::<subchapter>::<Current_ObjectID>::`vftable'
012511b0 <product_name>!<company>::<main_product>::<chapter>::<subchapter>::<Current_ObjectID>::`vftable'
01251194 <product_name>!<company>::<main_product>::<chapter>::<subchapter>::<Current_Object>::`vftable'
0125115c <product_name>!<company>::<main_product>::<chapter>::<subchapter>::<Current_Object>::`vftable'
For your information, the entries Current_Object
and Current_ObjectID
are present in the code, no problem there.
What I don't understand, is that there seem to be two entries for every symbol, and their memory addresses are very close to each other.
Does anybody know how I can interprete this?
it can be due to veriety of reasons Optimizations and redundant code elimination being one at the linking time (pdb is normally made when you compile) see this link by raymond chen for an overview
quoting relevent paragraph from the link
And when you step into the call to p->GetValue() you find yourself in Class1::GetQ.
What happened?
What happened is that the Microsoft linker combined functions that are identical
at the code generation level.
?GetQ@Class1@@QAEPAHXZ PROC NEAR ; Class1::GetQ, COMDAT
00000 8b 41 04 mov eax, DWORD PTR [ecx+4]
00003 c3 ret 0
?GetQ@Class1@@QAEPAHXZ ENDP ; Class1::GetQ
?GetValue@Class2@@UAEHXZ PROC NEAR ; Class2::GetValue, COMDAT
00000 8b 41 04 mov eax, DWORD PTR [ecx+4]
00003 c3 ret 0
?GetValue@Class2@@UAEHXZ ENDP ; Class2::GetValue
Observe that at the object code level, the two functions are identical.
(Note that whether two functions are identical at the object code level is
highly dependent on which version of what compiler you're using, and with
which optimization flags. Identical code generation for different functions
occurs with very high frequency when you use templates.) Therefore, the
linker says, "Well, what's the point of having two identical functions? I'll
just keep one copy and use it to stand for both Class1::GetQ and
Class2::GetValue."