I just started learning keras. I am trying to train a non-linear regression model in keras but model doesn't seem to learn much.
#datapoints
X = np.arange(0.0, 5.0, 0.1, dtype='float32').reshape(-1,1)
y = 5 * np.power(X,2) + np.power(np.random.randn(50).reshape(-1,1),3)
#model
model = Sequential()
model.add(Dense(50, activation='relu', input_dim=1))
model.add(Dense(30, activation='relu', init='uniform'))
model.add(Dense(output_dim=1, activation='linear'))
#training
sgd = SGD(lr=0.1);
model.compile(loss='mse', optimizer=sgd, metrics=['accuracy'])
model.fit(X, y, nb_epoch=1000)
#predictions
predictions = model.predict(X)
#plot
plt.scatter(X, y,edgecolors='g')
plt.plot(X, predictions,'r')
plt.legend([ 'Predictated Y' ,'Actual Y'])
plt.show()
what am I doing wrong?
Your learning rate is way too high.
Also, irrelevant to your issue, but you should not ask for metrics=['accuracy']
, as this is a regression setting and accuracy is meaningless.
So, with these changes:
sgd = SGD(lr=0.001);
model.compile(loss='mse', optimizer=sgd)
plt.legend([ 'Predicted Y' ,'Actual Y']) # typo in legend :)
here are some outputs (results will be different among runs, due to the random element of your y
):