I am trying to find out the topic document probabilities after running the lda model using text2vec package in R.
Following commands generate the model:
lda_model <- LDA$new(n_topics = n_topics, doc_topic_prior = 0.1, topic_word_prior = 0.01)
doc_topic_distr <- lda_model$fit_transform(x = quantdfm, n_iter = 2000, convergence_tol = 0.00001, n_check_convergence = 10, progressbar = FALSE)
quantdfm is the dtm using quanteda package, which I am plugging it in the $fit_transform method.
I noticed that the doc_topic_distr contains the topic document probabilities (without even asking for normalization). Is this correct? Because on a previous post: How to get topic probability table from text2vec LDA, Dmitriy Selivanov has asked to derive such probabilities using:
doc_topic_prob = normalize(doc_topic_distr, norm = "l1")
whereas when I use the same command as above, doc_topic_distr and doc_topic_prob have the same values (I thought the former contains integers as opposed to fractions in the latter).
Please suggest if this is the expected behavior of the code, or I have missed something here.
Thanks.
According to the up to date documentation LDA fit_transform
returns topic probabilities.