Search code examples
tensorflowbackpropagation

Tensorflow Backpropagation with variable batch size


I have a tensorflow model where each tensor in a batch has a different size. Would it be possible to get the correct gradients if I concatenate all the losses and run the optimizer on them like in this example:

import tensorflow as tf

v1 = tf.range(9,dtype=tf.float32)
v2 = tf.range(6,dtype=tf.float32)
v1 = tf.reshape(v1,[3,3])
v2 = tf.reshape(v2,[2,3])

gt1 = tf.constant([2,5,4])
gt2 = tf.constant([1,5])

with tf.variable_scope("var"):
    w = tf.get_variable('w', [3,7], dtype=tf.float32)
    r1 = v1 @ w
    r2 = v2 @ w

loss1 = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=gt1, logits=r1)
loss2 = tf.nn.sparse_softmax_cross_entropy_with_logits(labels=gt2, logits=r2)

loss = tf.concat([loss1, loss2],axis=0)
optimizer = tf.train.AdamOptimizer().minimize(loss)

with tf.Session() as sess:
    # print the output of ta_final_result
    sess.run(tf.global_variables_initializer())
    print(sess.run(w))
    print(sess.run(optimizer))
    print(sess.run(w))

Solution

  • This is exactly equivalent to summing loss down to a scalar before passing it to minimize. In fact a reduce_sum will be implicitly added to the graph; you can try passing non-scalars to tf.gradients and see what happens:

    import tensorflow as tf
    session = tf.InteractiveSession()
    v = tf.get_variable("v", shape=[])
    session.run(v.assign(2.))
    grad = tf.gradients([v ** 2., v ** 3.], [v])
    session.run(grad)
    

    [16.0]

    Which is 2*2 + 3*2^2.