I have repurposed an Inception V3
network using the transfer learning method, following this article.
For that, I removed the final network layer, and fed hundreds of images of my face into the network.
A new model was then sucessfully generated: inceptionv3-ft.model
Now I would like to load this model and use its fixed weights to apply my face as a 'theme' on a input image, like google-dream
.
For that I am using a keras
program, which loads models like so:
from keras.applications import inception_v3
# Build the InceptionV3 network with our placeholder.
# The model will be loaded with pre-trained ImageNet weights.
model = inception_v3.InceptionV3(weights='imagenet',
include_top=False)
dream = model.input
Full code here: https://github.com/keras-team/keras/blob/master/examples/deep_dream.py
So, how do I load and pass not a pre-trained but rather my RE-trained model weights?
simply:
from keras.models import load_model
model = load_model('inceptionv3-ft.model')
dream = model.input