I am working on an image search project for which i have defined/extracted the key point features using my own algorithm. Initially i extracted only single feature and tried to match using cv2.FlannBasedMatcher() and it worked fine which i have implemented as below:
Here vec is 2-d list of float values of shape (10, )
Ex:
[[0.80000000000000004, 0.69999999999999996, 0.59999999999999998, 0.44444444444444448, 0.25, 0.0, 0.5, 2.0, 0, 2.9999999999999996]
[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001]
[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001]
[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001]]
vec1 = extractFeature(img1)
vec2 = extractFeature(img2)
q1 = np.asarray(vec1, dtype=np.float32)
q2 = np.asarray(vec2, dtype=np.float32)
FLANN_INDEX_KDTREE = 0
index_params = dict(algorithm = FLANN_INDEX_KDTREE, trees = 5)
search_params = dict(checks=50) # or pass empty dictionary
flann = cv2.FlannBasedMatcher(index_params,search_params)
matches = flann.knnMatch(q1,q2,k=2)
But now i have one more feature descriptor for each key point along with previous one but of different length. So now my feature descriptor has shape like this:
[[[0.80000000000000004, 0.69999999999999996, 0.59999999999999998, 0.44444444444444448, 0.25, 0.0, 0.5, 2.0, 0, 2.9999999999999996],[2.06471330e-01, 1.59191645e-02, 9.17678759e-05, 1.32570314e-05, 4.58424252e-10, 1.66717250e-06,6.04810165e-11]
[[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001],[ 2.06471330e-01, 1.59191645e-02, 9.17678759e-05, 1.32570314e-05, 4.58424252e-10, 1.66717250e-06, 6.04810165e-11],
[[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001],[ 2.06471330e-01, 1.59191645e-02, 9.17678759e-05, 1.32570314e-05, 4.58424252e-10, 1.66717250e-06, 6.04810165e-11],
[[2.25, 2.666666666666667, 3.4999999999999996, 0, 2.5, 1.0, 0.5, 0.37499999999999994, 0.20000000000000001, 0.10000000000000001],[ 2.06471330e-01, 1.59191645e-02, 9.17678759e-05, 1.32570314e-05, 4.58424252e-10, 1.66717250e-06, 6.04810165e-11]]
Now since each point's feature descriptor is a list two lists(descriptors) with different length that is (10, 7, ) so in this case i am getting error:
setting an array element with a sequence.
while converting feature descriptor to numpy array of float datatype:
q1 = np.asarray(vec1, dtype=np.float32)
I understand the reason of this error is different length of lists, so i wonder What would be the right way to implement the same?
You should define a single descriptor of size 10+7=17
.
This way, the space descriptor is now of 17 and you should be able to use cv2.FlannBasedMatcher
.
Either create a global descriptor of the correct size desc_glob = np.zeros((nb_pts,17))
and fill it manually or find a Python way to do it. Maybe np.reshape((nb_pts,17))
?
Edit:
To not favor one descriptor type over the other, you need to weight or normalize the descriptors. This is the same principle than computing a global descriptor distance from two descriptors:
dist(desc1, desc2) = dist(desc1a, desc2a) + lambda * dist(desc1b, desc2b)