I have the following datagram:
date DP
0 1/31/1900 0.0357
1 2/28/1900 0.0362
2 3/31/1900 0.0371
3 4/30/1900 0.0379
4 5/31/1900 0.0410
I want to turn it into a timeseries, and I'm using set_index to do so. After running this line of code:
df.set_index('date', inplace=True)
I get the following timeseries:
DP
date
1/31/1900 0.0357
2/28/1900 0.0362
3/31/1900 0.0371
4/30/1900 0.0379
5/31/1900 0.0410
This is turning date into an index itself, which messes up my program later on when I concatenate datagrams via date. I know I can fix this manually, but I'd like to know what I'm doing wrong here. As far as I know, I'm using the function correctly, and if I don't do it inplace pandas will make a new datagram and have the indexes be 0-n by default.
Option 1
pd.Series(df.DP.values, pd.to_datetime(df.date))
date
1900-01-31 0.0357
1900-02-28 0.0362
1900-03-31 0.0371
1900-04-30 0.0379
1900-05-31 0.0410
dtype: float64
Option 2
df.DP.set_axis(pd.to_datetime(df.date), inplace=False)
date
1900-01-31 0.0357
1900-02-28 0.0362
1900-03-31 0.0371
1900-04-30 0.0379
1900-05-31 0.0410
Name: DP, dtype: float64
Option 3
@Wen's solution (will delete when he posts)
df.set_index(pd.to_datetime(df.date)).DP
date
1900-01-31 0.0357
1900-02-28 0.0362
1900-03-31 0.0371
1900-04-30 0.0379
1900-05-31 0.0410
Name: DP, dtype: float64