I want to translate a dataframe to frozensets and keep the dataframe columns within the frozenset.
Example
x=pd.DataFrame(data=dict(sample=["A","B","C"],lane=[1,1,2]))
>>> x
lane sample
0 1 A
1 1 B
2 2 C
And I would like something as :
x2= {frozenset({("sample", "A"), ("lane", 1)}),
frozenset({("sample", "B"), ("lane", 1)}),
frozenset({("sample", "C"), ("lane", 2)})}
>>> x2
{frozenset({('sample', 'B'), ('lane', 1)}), frozenset({('sample', 'A'), ('lane', 1)}), frozenset({('lane', 2), ('sample', 'C')})}
I tried x.apply(frozenset,1)
but it gives me that :
0 (1, A)
1 (1, B)
2 (C, 2)
dtype: object
Any help will be useful. Thank you
You can convert your dataframe to the records
format you need with pd.DataFrame.to_dict
:
x.to_dict('records')
# [{'sample': 'A', 'lane': 1},
# {'sample': 'B', 'lane': 1},
# {'sample': 'C', 'lane': 2}]
Since this results in a list, you can then map frozenset
to the list like so:
# using abbreviation 'r' instead of 'records'
map(lambda y: frozenset(y.iteritems()), x.to_dict('r'))
# [frozenset([('sample', 'A'), ('lane', 1)]),
# frozenset([('sample', 'B'), ('lane', 1)]),
# frozenset([('sample', 'C'), ('lane', 2)])]
Or, using a set comprehension, if your output should be a set of frozensets:
{frozenset(y.iteritems()) for y in x.to_dict('records')}
# set([frozenset([('sample', 'C'), ('lane', 2)]),
# frozenset([('sample', 'B'), ('lane', 1)]),
# frozenset([('sample', 'A'), ('lane', 1)])])