I have a dataframe with two rows and single column:
import pandas as pd
raw_data = {'T': [[(0, 0.5), (1, 0.25), (2, 0.25)], [(1, 0.99)]]}
df = pd.DataFrame(raw_data, columns=['T'])
#T
#[(0, 0.5), (1, 0.25), (2, 0.25)]
#[(1, 0.99)]
As you see row is kind of dictionary, I know the max number of dictionary elements (in our case 3 or 2 if you start counting from 0;) ). I want to create additional three columns T0, T1, T2 with following values within this dataframe:
T0 T1 T2 (df header)
0.5 0.25 0.25
0 0.99 0
Use list comprehension
with concat
, then transpose, fillna
and add_prefix
:
df=pd.concat([pd.Series(dict(x)) for x in raw_data['T']], axis=1).T.fillna(0).add_prefix('T')
print (df)
T0 T1 T2
0 0.5 0.25 0.25
1 0.0 0.99 0.00