In Go source I have
type T struct {
// some data
}
func (t *T)M(arg0 SomeType1) {
// some computations
}
var Obj *T
In C sources I have
// SomeType1C is equivalent to SomeType1.
typedef void (*CallbackFunc)(SomeType1C);
// callback will be called !after! register_callback function returns.
void register_callback(CallbackFunc callback);
I would like to use Obj.M
as callback
for register_callback
in C.
On MS Windows for winapi I pass smth like C.CallbackFunc(unsafe.Pointer(syscall.NewCallback(Obj.M)))
to register_callback
for this (not sure is it fully correct, but at least this works). But where is no NewCallback
for non-Windows systems.
PS:
I'm sure that callback is registered after T
is initialised and removed before T
is removed.
I may have multiple instances of T
and some of them may be used to callback's 'source' at same time (so T
is not some kind of singltone).
Function pointer callbacks
in GoLang's wiki uses gateway function
, but I don't see how to adequate use it with struct's method.
Base idea:
Use exported callback as a proxy between C and Go:
//export callback
func callback(data0 SomeType1C, data1 Data){ // data1 - data passed to register_callback_with_data
obj := convertDataToObj(data1)
obj.M(data0)
}
and register it like this:
register_callback_with_data(callback, convertObjToData(obj));
Where are 3 ways: wrong (and easy), limited (medium) and right (hard).
Wrong (and easy) way:
Pass pointer to Go struct into C (as in original answer). This is totally wrong because Go runtime can move struct in memory. Usually this operation is transparent (all Go pointers will be updated automatically). But pointers in C memory to this struct will not be updated and program may crash/UB/... when tries to use it. Do not use this way.
Limited (medium) way:
Similar to previous, but with Go struct allocated in C memory:
Obj = (*T)(C.calloc(C.size_t(unsafe.Sizeof(T{}))))
In this case Obj can not be moved by Go runtime because it is in C memory. But now if Obj
has pointers to Go memory (fields with *-variables, maps, slices, channels, function-pointers, ...) then this also may cause crash/UB/... This is because:
So, use this way only if struct has no pointers to Go memory. Usually this means that struct contains only primitive fields (ints, floats, bool).
Right (and hard) way:
Assign id (of integer type for example) for each object of type T
and pass this id into C. In exported callback you should convert id back to object. This is right way with no limitation, so this way may be used always. But this way requires to maintain some array/slice/map to convert between objects and ids. Moreover, this convertation may require some synchronization for thread-safe (so see sync.Mutex
and sync.RWMutex
).
Original answer:
Not best answer and has restrictions, but no other suggested. In my case I can pass additional data to register_callback
. This data will be passed back to callback
on each call. So I pass unsafe.Pointer(Obj)
as data and use gateway function
:
//export callback
func callback(data SomeType1C, additionalData unsafe.Pointer){
obj := (*T)(additionalData) // Get original Obj (pointer to instance of T)
dataGo := *(*SomeType1)(unsafe.Pointer(&data)) // Cast data from C to Go type
obj.M(dataGo)
}
and register it like this:
register_callback_with_data(callback, unsafe.Pointer(Obj));
PS: but still want to know how to do this better in general case (without additional data
).