I have a 2-dimensional data set.
I use the R's smooth.spline
function to smooth my points graph following an example in this article:
https://stat.ethz.ch/R-manual/R-devel/library/stats/html/predict.smooth.spline.html
So that I get the spline graph similar to the green line on this picture
I'd like to know the X
values, where the first derivative of the smoothing spline equals zero (to determine exact minimum or maximum).
My problem is that my initial dataset (or a dataset that I could auto-generate) to feed into the predict()
function does not contain such exact X
values that correspond to the smoothing spline extrema.
How can I find such X
values?
Here is the picture of the first derivative of the green spline line above
But exact X coordinate of extremums are still not exact.
My approximate R script to generate the pictures looks like the following
sp1 <- smooth.spline(df)
pred.prime <- predict(sp1, deriv=1)
pred.second <- predict(sp1, deriv=2)
d1 <- data.frame(pred.prime)
d2 <- data.frame(pred.second)
dfMinimums <- d1[abs(d1$y) < 1e-4, c('x','y')]
I think that there are two problems here.
Here is basically your code but with many more x values and requiring smaller derivatives. Since you do not provide any data, I made a coarse approximation to it that should suffice for illustration.
## Coarse approximation of your data
x = runif(300, 0,45000)
y = sin(x/5000) + sin(x/950)/4 + rnorm(300, 0,0.05)
df = data.frame(x,y)
sp1 <- smooth.spline(df)
Sx = seq(0,45000,10)
pred.spline <- predict(sp1, Sx)
d0 <- data.frame(pred.spline)
pred.prime <- predict(sp1, Sx, deriv=1)
d1 <- data.frame(pred.prime)
Mins = which(abs(d1$y) < mean(abs(d1$y))/150)
plot(df, pch=20, col="navy")
lines(sp1, col="darkgreen")
points(d0[Mins,], pch=20, col="red")
The extrema look pretty good.
plot(d1, type="l")
points(d1[Mins,], pch=20, col="red")
The points identified look like zeros of the derivative.