Context: I want to create an interactive heatmap with areas separated by a ZIP code. I've found no way of displaying it directly (i.e. using Google Maps or OSM), so I want to create curves or lines that are separating those areas, and visualize it in maps.
I have a set of points, represented by their coordinates and their according class (ZIP code). I want to get a curve separating them. The problem is that these points are not linearly separable.
I tried to use softmax regression, but that doesn't work well with non-linearly separable classes. The only methods I know which are able to separate non-linearly are nearest neighbors and neural networks. But such classifiers only classify, they don't tell me the borders between classes.
Is there a way to get the borders somehow?
If you have a dense cloud of known points within each Zip code with coordinates [latitude. longitude, zip code], using machine learning to find the boundary enclosing those points sounds like overkill.
You could probably get a good approximation of the boundary by using computational geometry, e.g finding the 2D convex hull of each Zip code's set of points using the Matlab convhull function
K = convhull(X,Y)
The result K would be a vector of points enclosing the input X, Y vector of points, that could be used to draw a polygon.
The only complication would be what coordinate system to work in, you might need to do a bit of work going between (lat, lon) and map (x,y) coordinates. If you do not have the Matlab Mapping Toolbox, you could look at the third party library M_Map M_Map home page, which offers some of the same functionality.
Edit: If the cloud of points for Zip codes has a bounding region that is non convex, you may need a more general computational geometry technique to find a better approximation to the bounding region. Performing a Voronoi tesselation of the region, as suggested in the comments, is one such possibility.