Search code examples
pythonpandaspandas-groupbysplit-apply-combine

Groupby cumulative mean with wide/long pivoting


I have a DataFrame that looks like this (see bottom here for code to reproduce it):

         date      id_  val
0  2017-01-08     a; b  9.3
1  2017-01-07  a; b; c  7.9
2  2017-01-07        a  7.3
3  2017-01-06        b  9.0
4  2017-01-06        c  8.1
5  2017-01-05        c  7.4
6  2017-01-05        d  7.1
7  2017-01-05        a  7.0
8  2017-01-04     b; a  7.7
9  2017-01-04     c; a  5.3
10 2017-01-04     a; c  8.0

I want to groupby the individual (semicolon-delimited) elements of id_ and calculate a cumulative mean of val up to but not including each date. This should give NaNs for the first occurence of any id_, which I'm then filling with some arbitrary value (6.0 here).

Output:

id_    
a    0     6.0000
     1     9.3000
     2     8.6000
     7     8.1667
     8     7.8750
     9     7.8400
     10    7.4167
b    0     6.0000
     1     9.3000
     3     8.6000
     8     8.7333
c    1     6.0000  # fill value
     4     7.9000  # first actual occurrence of id_='c'
     5     8.0000  # cumulative mean of the first two 'c'  
     9     7.8000
     10    7.1750
d    6     6.0000
Name: val, dtype: float64

This is my current process, which is quite slow--can it be improved? Secondly, can I maintain the date col in the final result?

# seems like `pd.melt` might be more direct here
df.sort_values('date', inplace=True)
stacked = df.id_.str.split('; ', expand=True).stack()
stacked.index = stacked.index.droplevel(1)
stacked = stacked.to_frame()\
    .merge(df, left_index=True, right_index=True)\
    .drop('id_', axis=1)\
    .rename({0: 'id_'}, axis=1)


def trend_scorer(s: pd.Series, fillvalue=6.):
    return s['val'].expanding().mean().shift(1).fillna(fillvalue)


stacked.groupby('id_').apply(trend_scorer)

DataFrame creation:

import pandas as pd

data = \
{'id_': {0: 'a; b',
             1: 'a; b; c',
             2: 'a',
             3: 'b',
             4: 'c',
             5: 'c',
             6: 'd',
             7: 'a',
             8: 'b; a',
             9: 'c; a',
             10: 'a; c'},
 'date': {0: '1/8/17',
          1: '1/7/17',
          2: '1/7/17',
          3: '1/6/17',
          4: '1/6/17',
          5: '1/5/17',
          6: '1/5/17',
          7: '1/5/17',
          8: '1/4/17',
          9: '1/4/17',
          10: '1/4/17'},
 'val': {0: 9.3,
           1: 7.9,
           2: 7.3,
           3: 9.0,
           4: 8.1,
           5: 7.4,
           6: 7.1,
           7: 7.0,
           8: 7.7,
           9: 5.3,
           10: 8.0}}

df = pd.DataFrame(data)
df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)

Solution

  • groupby/apply is generally a relatively slow operation (compared to Pandas' Cythonized or NumPy's vectorized operations) because it requires calling a Python function once for each group. Avoid it if possible. In this case, you can gain a modest advantage by using groupby/expanding instead:

    result = stacked.groupby('id_').expanding()['val'].mean()
    result = result.groupby(level='id_').shift(1).fillna(fillvalue)
    

    To rejoin this result with stacked, you could use DataFrame.join -- the main issue here being that the DataFrames must share the same index levels before you can join them:

    result = stacked.set_index('id_', append=True).swaplevel().join(result)
    

    On your small example DataFrame, alt is about 1.3x faster than orig:

    In [500]: %timeit orig(df)
    100 loops, best of 3: 12.5 ms per loop
    
    In [501]: %timeit alt(df)
    100 loops, best of 3: 9.49 ms per loop
    

    On a larger DataFrame with 10K rows and 1000 groups, the speed advantage of alt is about the same:

    In [504]: %timeit orig(df)
    1 loop, best of 3: 2.34 s per loop
    
    In [505]: %timeit alt(df)
    1 loop, best of 3: 1.95 s per loop
    

    (Fixed costs, such as stacked.set_index('id_', append=True).swaplevel().join(result) swamp the relatively small benefit of using groupby/expanding instead of groupby/apply).


    Here is the code used to make the benchmarks above:

    import pandas as pd
    import numpy as np
    
    def trend_scorer(s: pd.Series, fillvalue=6.):
        return s['val'].expanding().mean().shift(1).fillna(fillvalue)
    
    def orig(df):
        stacked = df.id_.str.split('; ', expand=True).stack()
        stacked.index = stacked.index.droplevel(1)
        stacked = (stacked.to_frame()
                   .merge(df, left_index=True, right_index=True)
                   .drop('id_', axis=1)
                   .rename(columns={0: 'id_'}))                   
        result = stacked.groupby('id_').apply(trend_scorer)
        result = result.rename('expanding mean')
        result = stacked.set_index('id_', append=True).swaplevel().join(result)
        return result
    
    def alt(df, fillvalue=6.0):
        stacked = df['id_'].str.split('; ', expand=True).stack()
        stacked.index = stacked.index.droplevel(1)
        stacked = (df.drop('id_', axis=1)
                   .join(stacked.rename('id_')))
        result = stacked.groupby('id_').expanding()['val'].mean()
        result = result.groupby(level='id_').shift(1).fillna(fillvalue)
        result = result.rename('expanding mean')
        result = stacked.set_index('id_', append=True).swaplevel().join(result)
        return result
    
    data = {'id_': {0: 'a; b', 1: 'a; b; c', 2: 'a', 3: 'b', 4: 'c', 5: 'c', 6: 'd', 7: 'a', 8: 'b; a', 9: 'c; a', 10: 'a; c'}, 'date': {0: '1/8/17', 1: '1/7/17', 2: '1/7/17', 3: '1/6/17', 4: '1/6/17', 5: '1/5/17', 6: '1/5/17', 7: '1/5/17', 8: '1/4/17', 9: '1/4/17', 10: '1/4/17'}, 'val': {0: 9.3, 1: 7.9, 2: 7.3, 3: 9.0, 4: 8.1, 5: 7.4, 6: 7.1, 7: 7.0, 8: 7.7, 9: 5.3, 10: 8.0}}
    df = pd.DataFrame(data)
    df['date'] = pd.to_datetime(df['date'], infer_datetime_format=True)
    df = df.sort_values('date')
    
    assert alt(df).equals(orig(df))
    

    This is how I created the larger test DataFrame for the benchmark above:

    import numpy as np
    def make_df(N=10000, seed=2018):
        np.random.seed(seed)
        data = []
        for date in pd.date_range('2017-1-1', periods=N):
            for i in range(np.random.randint(1, 10)):
                ids = '; '.join(np.random.choice(1000, size=np.random.randint(1, 10)).astype(str))
                data.append((date, ids))
    
        df = pd.DataFrame(data, columns=['date', 'id_'])
        df['val'] = np.random.uniform(1, 10, size=len(df))
        return df
    
    df = make_df()