I need to generate random number with Boost Random.
I tried to follow the general guide.
I extracted the files of the library. So if I want to use the classes and objectj of the library how I should do?
First I know including the library in the program. Then I have to compile the library and the program.cpp itself? (And both with the same compiler - I'm using g++).
I am using a virtual box of ubuntu. It is first time that I am using library so I really don't know.
the random number for my case must be double not just integer...
So, you use a real number distribution.
I'm not this kind of "getting started" is the best fit for StackOverflow, but I'll give you this quick hints:
In your Ubuntu virtual box:
sudo apt-get install libboost-all-dev
mkdir -pv ~/myproject
cd ~/myproject
Create a file using your favourite editor. If you have none, gedit main.cpp
or nano main.cpp
is a start:
#include <boost/random.hpp>
#include <iostream>
int main() {
boost::random::mt19937 rng;
boost::random::uniform_real_distribution<double> gen(0.0, 1.0);
for (int i = 0; i < 10; ++i) {
std::cout << gen(rng) << "\n";
}
}
Now compile it using
g++ -O2 -Wall -Wextra -pedantic main.cpp -o demo
The program is now ready to run: Live On Coliru
./demo
Printing
0.814724
0.135477
0.905792
0.835009
0.126987
0.968868
0.913376
0.221034
0.632359
0.308167
The above works because the Boost Random library is mostly header only. What if you wanted to use the random_device
implementation to seed the random generator?
#include <boost/random.hpp>
#include <boost/random/random_device.hpp>
#include <iostream>
int main() {
boost::random::random_device seeder;
boost::random::mt19937 rng(seeder());
boost::random::uniform_real_distribution<double> gen(0.0, 1.0);
for (int i = 0; i < 10; ++i) {
std::cout << gen(rng) << "\n";
}
}
Now you'll have to link as well: Compiling with
g++ -O2 -Wall -Wextra -pedantic main.cpp -o demo -lboost_random
Now the output will be different each run.
You don't need Boost here at all:
#include <random>
#include <iostream>
int main() {
std::random_device seeder;
std::mt19937 rng(seeder());
std::uniform_real_distribution<double> gen(0.0, 1.0);
for (int i = 0; i < 10; ++i) {
std::cout << gen(rng) << "\n";
}
}
Compile with
g++ -std=c++11 -O2 -Wall -Wextra -pedantic main.cpp -o demo
And run it again with ./demo
Showing a whole gamut of distributions that have mean=0 and stddev=1:
#include <random>
#include <iostream>
#include <iomanip>
#include <chrono>
#include <boost/serialization/array_wrapper.hpp>
#include <boost/accumulators/accumulators.hpp>
#include <boost/accumulators/statistics.hpp>
namespace ba = boost::accumulators;
using Accum = ba::accumulator_set<double, ba::stats<ba::tag::variance, ba::tag::mean> >;
using Clock = std::chrono::high_resolution_clock;
using namespace std::chrono_literals;
static double identity(double d) { return d; }
template <typename Prng, typename Dist, typename F = double(double), size_t N = (1ull << 22)>
void test(Prng& rng, Dist dist, F f = &identity) {
Accum accum;
auto s = Clock::now();
for (size_t i = 0; i<N; ++i)
accum(f(dist(rng)));
std::cout
<< std::setw(34) << typeid(Dist).name()
<< ":\t" << ba::mean(accum)
<< " stddev: " << sqrt(ba::variance(accum))
<< " N=" << N
<< " in " << ((Clock::now()-s)/1.s) << "s"
<< std::endl;
}
int main() {
std::mt19937 rng(std::random_device{}());
auto shift = [](double shift) { return [=](double v) { return v + shift; }; };
auto scale = [](double scale) { return [=](double v) { return v * scale; }; };
std::cout << std::fixed << std::showpos;
test(rng, std::uniform_real_distribution<double>(-sqrt(3), sqrt(3)));
test(rng, std::weibull_distribution<double>(), shift(-1));
test(rng, std::exponential_distribution<double>(), shift(-1));
test(rng, std::normal_distribution<double>());
test(rng, std::lognormal_distribution<double>(0, log(0.5)), shift(-exp(pow(log(0.5),2)/2)));
test(rng, std::chi_squared_distribution<double>(0.5), shift(-0.5));
{
auto sigma = sqrt(6)/M_PI;
static constexpr double ec = 0.57721566490153286060;
test(rng, std::extreme_value_distribution<double>(-sigma*ec, sigma));
}
test(rng, std::fisher_f_distribution<double>(48, 8), shift(-(8.0/6.0)));
test(rng, std::student_t_distribution<double>(4), scale(sqrt(0.5)));
test(rng, std::student_t_distribution<double>(4), scale(sqrt(0.5)));
}
Prints
St25uniform_real_distributionIdE: +0.000375 stddev: +1.000056 N=4194304 in +0.169681s
St20weibull_distributionIdE: +0.001030 stddev: +1.000518 N=4194304 in +0.385036s
St24exponential_distributionIdE: -0.000360 stddev: +1.000343 N=4194304 in +0.389443s
St19normal_distributionIdE: -0.000133 stddev: +1.000330 N=4194304 in +0.390235s
St22lognormal_distributionIdE: +0.000887 stddev: +1.000372 N=4194304 in +0.521975s
St24chi_squared_distributionIdE: -0.000092 stddev: +0.999695 N=4194304 in +1.233835s
St26extreme_value_distributionIdE: -0.000381 stddev: +1.000242 N=4194304 in +0.611973s
St21fisher_f_distributionIdE: -0.000073 stddev: +1.001588 N=4194304 in +1.326189s
St22student_t_distributionIdE: +0.000957 stddev: +0.998087 N=4194304 in +1.080468s
St22student_t_distributionIdE: +0.000677 stddev: +0.998786 N=4194304 in +1.079066s