The following code
from sklearn import metrics
import numpy as np
y_true = np.array([[0.2,0.8,0],[0.9,0.05,0.05]])
y_predict = np.array([[0.5,0.5,0.0],[0.5,0.4,0.1]])
metrics.log_loss(y_true, y_predict)
produces the following error:
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-32-24beeb19448b> in <module>()
----> 1 metrics.log_loss(y_true, y_predict)
~\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\metrics\classification.py in log_loss(y_true, y_pred, eps, normalize, sample_weight, labels)
1646 lb.fit(labels)
1647 else:
-> 1648 lb.fit(y_true)
1649
1650 if len(lb.classes_) == 1:
~\AppData\Local\conda\conda\envs\tensorflow\lib\site-packages\sklearn\preprocessing\label.py in fit(self, y)
276 self.y_type_ = type_of_target(y)
277 if 'multioutput' in self.y_type_:
--> 278 raise ValueError("Multioutput target data is not supported with "
279 "label binarization")
280 if _num_samples(y) == 0:
ValueError: Multioutput target data is not supported with label binarization
I am curious why. I am trying to re-read definition of log loss and cannot find anything that would make computations incorrect.
The source code indicates that metrics.log_loss does not support probabilities in y_true
. It only supports binary indicators of shape (n_samples, n_classes)
, for example [[0,0,1],[1,0,0]]
or class labels of shape (n_samples,)
, for example [2, 0]
. In the latter case the class labels will be one-hot encoded to look like the indicator matrix before calculating log loss.
In this block:
lb = LabelBinarizer()
if labels is not None:
lb.fit(labels)
else:
lb.fit(y_true)
You are reaching lb.fit(y_true)
, which will fail if y_true
is not all 1
and/or 0
. For example:
>>> import numpy as np
>>> from sklearn import preprocessing
>>> lb = preprocessing.LabelBinarizer()
>>> lb.fit(np.array([[0,1,0],[1,0,0]]))
LabelBinarizer(neg_label=0, pos_label=1, sparse_output=False)
>>> lb.fit(np.array([[0.2,0.8,0],[0.9,0.05,0.05]]))
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/home/imran/.pyenv/versions/anaconda3-4.4.0/lib/python3.6/site-packages/sklearn/preprocessing/label.py", line 278, in fit
raise ValueError("Multioutput target data is not supported with "
ValueError: Multioutput target data is not supported with label binarization
I would define your own custom log loss function:
def logloss(y_true, y_pred, eps=1e-15):
y_pred = np.clip(y_pred, eps, 1 - eps)
return -(y_true * np.log(y_pred)).sum(axis=1).mean()
Here is the output on your data:
>>> logloss(y_true, y_predict)
0.738961717153653